SP2901 GEOPROB - One Geometry Problem 题解

本文介绍了一种通过建立直角坐标系解决中考数学几何题目的方法,详细解析了一道难度被误判的证明题。通过构造辅助线和利用勾股定理,将复杂几何问题转化为代数运算,最终得出简洁的解题步骤,并用Python实现求解,展示了数学问题的转化与简化技巧。
摘要由CSDN通过智能技术生成

Link

说实话,这题难度虚高了。

个人认为,这道题可以直接放在中考试卷中,且只是一道普通的证明题而已。洛谷谷民人均AK中考数学,一道中考题最多就黄色

解题思路

看到已经有神犇利用平面几何的标准方法证明了这道题的式子,那我们就不用标准的平面几何的方法来求解了,我们可以对所求平面建立直角坐标系建系大法好

通过建立直角坐标系以及题目描述,我们可以得到很多有用的信息,或者说关系。

  • ∠ B C D = 9 0 ∘ \angle BCD=90^\circ BCD=90,即 ∠ B C P \angle BCP BCP ∠ P C D \angle PCD PCD 互余

  • O B = b , P C = c , E D = d , O E = a OB=b,PC=c,ED=d,OE=a OB=b,PC=c,ED=d,OE=a

  • B C = C D \mathbf{BC=CD} BC=CD 我就是忘了这个条件结果想了很久,自闭了

O P , P E OP,PE OP,PE 都是未知量,不妨设 O P = x , P E = y OP=x,PE=y OP=x,PE=y

有了 x , y x,y x,y,我们就可以轻松的描述每一个点

B ( 0 , b ) B(0,b) B(0,b)

C ( x , c ) C(x,c) C(x,c)

D ( x + y , d ) D(x+y,d) D(x+y,d)

考虑到最终我们要用 b , c , d b,c,d b,c,d 表示 x , y x,y x,y,那我们可以先将已知的边都用 b , c , d b,c,d b,c,d 表示,助推思路:

B C = x 2 + ( c − b ) 2 BC=\sqrt{x^2+(c-b)^2} BC=x2+(cb)2

C D = y 2 + ( d − c ) 2 CD=\sqrt{y^2+(d-c)^2} CD=y2+(dc)2

知道了每条边的数量,怎样求 x , y x,y x,y?经历过中考的毒打肯定很清楚,在图中找等量关系

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tQpDE5Pn-1654326374350)(https://cdn.luogu.com.cn/upload/image_hosting/ckdugruy.png)]

我们作辅助线 B Q , M D BQ,MD BQ,MD,满足 B Q ⊥ P C , M D ⊥ P C BQ\perp PC,MD\perp PC BQPC,MDPC,便构造出了 R t △ B Q C Rt\triangle BQC RtBQC R t △ C M D Rt\triangle CMD RtCMD

此时有 B Q = O P = x , M D = P E = y BQ=OP=x,MD=PE=y BQ=OP=x,MD=PE=y,利用辅助线,我们成功转边,此时几何往往会给我们惊喜。

考虑从三角形入手,因为

{ ∠ B Q M = ∠ C M D = 9 0 ∘ ∵ ∠ B C P + ∠ P C D = 9 0 ∘ ∴ ∠ P C D = ∠ Q B C B C = C D \begin{cases} \angle BQM=\angle CMD=90^\circ\\ \because \angle BCP+\angle PCD=90^\circ\quad\therefore \angle PCD=\angle QBC\\ BC=CD \end{cases} BQM=CMD=90BCP+PCD=90PCD=QBCBC=CD

因此

R t △ B Q C ≅ R t △ C M D Rt\triangle BQC\cong Rt\triangle CMD RtBQCRtCMD

∴ O P = B Q = M C = x , P E = M D = Q C = y \therefore OP=BQ=MC=x,PE=MD=QC=y OP=BQ=MC=x,PE=MD=QC=y

因此对 R t △ B Q C Rt\triangle BQC RtBQC 利用勾股定理就可以得到 Q C QC QC

Q C = y = x 2 + ( c − b ) 2 − x 2 = ( c − b ) 2 = ∣ c − b ∣ QC=y=\sqrt{x^2+(c-b)^2-x^2}=\sqrt{(c-b)^2}=\mid c-b\mid QC=y=x2+(cb)2x2 =(cb)2 =cb

同理可以得到 M C MC MC

M C = x = y 2 + ( d − c ) 2 − y 2 = ( d − c ) 2 = ∣ d − c ∣ MC=x=\sqrt{y^2+(d-c)^2-y^2}=\sqrt{(d-c)^2}=\mid d-c\mid MC=x=y2+(dc)2y2 =(dc)2 =dc

于是我们就得到了

{ x = ∣ d − c ∣ y = ∣ c − b ∣ a = ∣ d − c ∣ + ∣ c − b ∣ \begin{cases} x=\mid d-c\mid\\ y=\mid c-b\mid\\ a=\mid d-c\mid +\mid c-b\mid \end{cases} x=dcy=cba=dc+cb

答案自己就出来了。

建系就是这样,我们仅仅只需要掌握两点坐标距离公式,有点几何问题的套路,对于所谓的难题,往往解法都会变得很无脑。

由于 b , c , d ≤ 1 0 100 b,c,d\le 10^{100} b,c,d10100,因此我们使用 p y t h o n 2 \mathbf{python 2} python2

t=int(raw_input())
while t>0:
    b,c,d=map(int,raw_input().split())
    print(abs(c-b)+abs(d-c))
    t=t-1

看到这里你会发现这个结果好像跟别的题解的公式不太一样,其实本质是一样的。因为题目保证了 b , d < c b,d<c b,d<c,于是我们可以对绝对值进行化简

∣ d − c ∣ + ∣ c − b ∣ = c − d + c − b = 2 c − b − d \begin{aligned} &\mid d-c\mid + \mid c-b\mid\\ =&c-d+c-b\\ =&2c-b-d \end{aligned} ==dc+cbcd+cb2cbd

这也是其他题解的公式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值