conda创建新环境

更详细可以参考:
Anaconda完全入门指南
conda官方文档
Anaconda官方文档

conda创建新环境

如果只是用的话,用【创建】和【激活】的命令足够了~

第一步:创建

conda create --name yourEnv python=2.7

  • –name:也可以缩写为 【-n】,【yourEnv】是新创建的虚拟环境的名字,创建完,可以装anaconda的目录下找到envs/yourEnv 目录
  • python=2.7:是python的版本号。也可以指定为【python=3.6】,若未指定,默认为是装anaconda时python的版本.

若想要在创建环境同时安装python的一些包:
conda create -n yourEnv python=3.6 numpy pandas

若想在别人虚拟环境的基础上创建自己的环境:
conda create --name <yourEnv> --clone <baseEnv>

第二步:激活

windows ==> activate yourEnv
linux/mac ==> source activate yourEnv

tips:

  • linux用户需要进入到anaconda/envs目录下激活需要的环境,或者通过命令source active /home/yourName/anaconda3/envs/yourEnv激活需要的环境;

    上面激活的方式进入目录太复杂 or 命令太长了,可以通过设置全局变量或者用linux的别名alias设置。
    第一种方式,将需要激活的路径下的bin文件添加到全局环境变量中如将/home/yourName/anaconda3/envs/yourEnv/bin添加到~/.bash_profile中。
    第二种方式,通过vim ~/.bash_profile,向里面添加alias activeEnv='source activate /home/yourName/anaconda3/envs/yourEnv'source ~/.bash_profile之后可以直接在命令行输入activeEnv激活相应环境
    建议第二种,并建议看下linux的alias,非常好用

  • windows用户环境变量中添加(改成自己的路径):

    D:\Anaconda3
    D:\Anaconda3\Scripts
    D:\Anaconda3\Library\bin

第三步:查看活跃的环境

conda info --envs:输出中带有【*】号的的就是当前所处的环境

conda一些命令

conda list: 看这个环境下安装的包和版本
conda install numpy scikit-learn: 安装numpy sklearn包
conda env remove -n yourEnv: 删除你的环境
conda env list: 查看所有的环境

anaconda下载

比起官网,建议从清华开源镜像站下载相应版本

wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.3.1-Linux-x86_64.sh
bash Anaconda3-5.3.1-Linux-x86_64.sh

清华镜像源配置

清华官方说明:Anaconda 镜像使用帮助,主要概括为向 .condarc填充以下内容:

channels:
  - defaults
show_channel_urls: true
channel_alias: https://mirrors.tuna.tsinghua.edu.cn/anaconda
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  • linux: 直接vim ~/.condarc后添加;
  • Windows: 无法直接创建名为 .condarc的文件,可先执行conda config --set show_channel_urls yes 生成该文件之后再添加。

远程:

Jupyter notebook远程访问服务器

  • 参考: Jupyter notebook远程访问服务器
  • 注意第一个人的评论:" 我的要修改c.NotebookApp.ip=‘0.0.0.0’才能用"
  • 以及按照我的版本c.IPKernelApp.pylab = 'inline' 会报错
  • sshkey连接的方式:
    在这里插入图片描述

Pycharm远程连接服务器

  • 配置远程环境。在tools --> deployment -->configuration 下进行。配置好了记得选择这个环境(如图中红色标注所示)
    在这里插入图片描述
  • 配置好之后,可以用建立文件映射/配置远程的解释器/,这里讲解十分清晰
  • 启动 ctrl+s自动同步至远程环境。在tools --> deployment -->Options 中配置
    在这里插入图片描述

tips:

  • pycharm的快捷修复键 OPTION + ENTER
  • 优化导入 option + control + O

其他注意:

pytorch 安装不成功

  • 记得加上清华pytorch镜像:

    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
    # for legacy win-64
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/peterjc123/
    
  • 官网可以根据自己的系统等直接生成安装的命令,如果镜像后还是不成功将官方的安装命令conda install pytorch torchvision cudatoolkit=10.0 -c pytorch去掉-c pytorch,改为conda install pytorch torchvision cudatoolkit=10.0

  • cuda版本查看cat /usr/local/cuda/version.txt

keras和tersorflow对应版本问题

  • 两个版本如果不匹配可能出现:module ‘tensorflow.python.keras.backend’ has no attribute ‘get_graph’。可以从这里查看对应的版本
    pip uninstall keras # 卸载keras
    conda install keras=2.2.4 #安装对应版本的keras
    

torchnet安装

  • 手动:https://blog.csdn.net/weixin_43264516/article/details/83187775
  • 官方:pip install torchnet
  • git: pip install git https://github.com/pytorch/tnt.git@master
要在PyCharm创建一个的虚拟环境,你可以按照以下步骤进行操作: 1. 打开PyCharm并进入"Preferences"(Mac)或"Settings"(Windows)。 2. 在左侧的菜单中选择"Python Interpreter"。 3. 在右侧的窗口中,你将看到当前已安装的Python解释器列表。点击右上角的"+"按钮来添加一个的解释器。 4. 在弹出的窗口中,你可以选择不同的选项来创建的虚拟环境。你可以选择使用系统中已安装的Python解释器,或者创建一个的虚拟环境。 5. 如果你选择创建一个的虚拟环境,你可以指定虚拟环境的名称和位置。你还可以选择使用哪个Python版本。 6. 完成设置后,点击"OK"来创建的虚拟环境。 7. 现在,你可以在PyCharm中使用这个的虚拟环境来运行你的代码了。 请注意,创建虚拟环境可能需要一些时间,因为PyCharm需要下载和安装所需的依赖项。 #### 引用[.reference_title] - *1* [Pycharm创建虚拟环境](https://blog.csdn.net/qq_39208536/article/details/121493112)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [pycharm搭建python环境](https://blog.csdn.net/wyqwilliam/article/details/88937245)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [用pycharm配置建的python虚拟环境](https://blog.csdn.net/m0_69023493/article/details/129229924)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值