集成树模型的可解释性

14 篇文章 3 订阅
7 篇文章 0 订阅

机器学习模型相比于统计模型,显著的劣势是其可解释性。做回归时,统计模型有系数有P-value,机器学习却只能谈精度——但若论精度,统计模型折腾来折腾去,还是玩不过机器学习的。

但人们对机器学习模型的可解析性并没有放弃,并一直在努力进行改进。树模型便是其中的佼佼者。集成树中,最出名的当属Random Forest(RF)和Gradient boosting trees(GBM),后者也是近年来大火的XGB的根基。而解释集成树模型的两大利器:Feature importance和Partial dependence,则成了树模型的炫耀资本——高精度+快速+可解析性。

新的特征重要值的评价方法: permutation importances  ( impurity-based feature importances can be misleading for high cardinality features (many unique values). 因此可以使用permutation importances 替换.

从下图可以看出二者结果存在差异:

Feature Importance (MDI), Permutation Importance (test set)

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leon_124

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值