地学和环境类期刊点评

转载:https://songchunlin.net/cn/2019/06/journals/

 

水文水资源领域。在我心中排第一的当然是 WATER RESOURCES RESEARCH,作为 AGU 旗下的王牌期刊之一,多年来一直很稳,水资源最好的老牌期刊,在北美很受认可,也是中科院分区里唯一的一区水文水资源期刊。JOURNAL OF HYDROLOGY 也不错,今年影响因子居然超过了 WRR。这个期刊在水文的声誉很好,但是个人更偏爱 WRR 一些,JH 有一些文章在我看来也一般。HYDROLOGY AND EARTH SYSTEM SCIENCES 是水文和地球系统科学交叉学科里很好的杂志,和 WRR 和 JH 旗鼓相当,欧洲人很喜欢。这三大期刊如果能发上十篇,那基本可以在水文领域立足了。HYDROLOGICAL PROCESSES 偏向于野外观测试验,比上面这三大期刊低一档次,但也是很好的二区刊物。WATER RESEARCH 是和水有关的影响因子最高的期刊,也是自然指数遴选期刊,偏向于水质、水处理和水环境管理,据说很难发表。VADOSE ZONE JOURNAL 偏向土壤水,Ecohydrology 为生态水文特色的期刊,一直不温不火,都属于小而美的期刊。ADVANCES IN WATER RESOURCES 不是很了解,周围没有人发过。Water 影响因子一直上涨,但是个人对于 MDPI 出版社旗下的期刊还有疑虑,毕竟 MDPI 这个开源出版社曾经上过 Jeffrey Beall 的掠夺性期刊黑名单

生物地球化学领域。GLOBAL BIOGEOCHEMICAL CYCLES 是生物地球化学领域里我的最爱,作为一个有三十多年历史的期刊,文章数量不多但大都是精品,今年影响因子直接涨到 5.7,历史最高。去年美国的老板升任主编,估计他很自豪,马上就挂到自己实验室主页了上哈哈。中科院分区一直是环境生态类二区 Top,但在我心中不输一些一区杂志。AGU 的 JGR-Biogeosciences 和 EGU 的 Biogeosciences 是两个兄弟杂志,审稿都很严格,不是很好投,但个人更偏爱 JGR,原因是不太喜欢 EGU 那种投稿后讨论的模式,而且 JGR 的排版更美,有好文章会往这里投。BIOGEOCHEMISTRY 范围和 GBC 类似,相比 GBC 稍逊一筹,文章较深,影响因子也是持续上升。

地学综合类期刊。Nature Geoscience 是当之无愧的地学综合类顶尖杂志,我每周都会浏览一下,河流生物地球化学领域的最重要的文章很多都发在上面,很喜欢看。对我来讲是遥不可及了,前些年海外博士发一篇就可以拿青千了,国内每年会发两三篇的样子,都是大牛组。Nature Climate Change 影响因子高一些,和 Nature Geoscience 领域有重合,偏向于气候变化,模型文章多。GEOPHYSICAL RESEARCH LETTERS 是地学类最重要的杂志之一,发表地学各个领域最重要的发现,文章较短,长度在 8 页左右,对创新性要求高。Cryosphere 是冰冻圈科学领域最好的期刊,文章质量高,很难发。

环境综合类期刊。GLOBAL CHANGE BIOLOGY 一直是很牛的期刊,是全球变化领域除 Nature 子刊类最好的杂志了。ENVIRONMENTAL SCIENCE & TECHNOLOGY 和姊妹期刊 Environmental Science & Technology Letters 属于环境类最好的杂志序列,今年影响因子双双上涨,以前偏向环境化学和环境工程,最近几年也有一些自然环境演变和地学的文章,投不了 GCB 的文章可以投这里。SCIENCE OF THE TOTAL ENVIRONMENT 影响因子持续上涨,分区表现一直是 Top 期刊,文章数量多且杂,属于不错的期刊,但是比起 EST 还是差了不少。Environmental Research Letters 影响因子大涨到 6.2,作为一个开源期刊,个人印象略好于 STE,好东西可以往上面发。REMOTE SENSING OF ENVIRONMENT 是环境遥感最好的期刊,不做遥感,上面文章看得不多不太了解。

地学综述类期刊。我看的比较多的是 REVIEWS OF GEOPHYSICS 和 EARTH-SCIENCE REVIEWS,更喜欢前者,深度和广度兼具,很喜欢看上面相关领域的文章。EARTH-SCIENCE REVIEWS 上面的文章数量更多一些,但是有时候比较像研究类,喜欢针对一个问题深入展开,看得较少。Annual Review of Earth and Planetary Sciences 文献库里有几篇综述,看得较少,貌似只邀稿。

点评归点评,影响因子这种东西看看就好,并不是评价研究好坏的好参数,用来评价期刊也不太准。一些老牌期刊影响因子不高但是影响力很大。要真正去评价研究,还是要看论文本身。要是搞科研的人只关注文章所在期刊的分区和影响因子而不关注研究内容,那就太糟糕了。

### Watershed Delineation Methods Using Triangle-Based Terrain Models In Geographic Information Systems (GIS) and geospatial analysis, the watershed delineation process is crucial for understanding hydrological processes. When employing triangle-based terrain models, this method leverages triangulated irregular networks (TINs), which provide a more accurate representation of complex terrains compared to regular grids. #### Triangulation Process Triangle-based terrain modeling involves dividing the surface into non-overlapping triangles that best fit the elevation data points. This approach ensures higher fidelity in representing natural landscapes with varying topographies. Each vertex represents an observed or interpolated point on the ground level[^2]. #### Flow Direction Determination For each triangular facet within the TIN structure, flow direction can be determined by analyzing gradients between vertices. The steepest descent path from any given location will dictate how water flows across the landscape towards lower elevations until reaching outlets where watersheds converge. #### Identification of Drainage Networks Once all possible paths are established based on gradient calculations over individual facets, these lines form drainage patterns indicative of potential stream courses. By connecting adjacent lowest edges among neighboring triangles, one obtains continuous channels mimicking real-world river systems. #### Extraction of Sub-Watersheds Sub-watersheds emerge naturally as enclosed areas bounded by ridgelines formed at junctions separating diverging streams. These boundaries effectively partition larger basins into smaller units suitable for detailed studies such as runoff simulation or pollution source tracking. ```python import numpy as np from scipy.spatial import Delaunay def create_tin(points): """ Creates a Triangulated Irregular Network (TIN). Args: points (list): List of [x,y,z] coordinates. Returns: tuple: A tuple containing two elements; first element being array of simplices, second element being list of unique edge indices. """ tri = Delaunay(np.array(points)) return tri.simplices, set().union(*[{tuple(sorted([i,j])) for i,j,k in simplex} for simplex in tri.simplices]) points = [[0, 0, 1], [4, 0, 2], [2, 4, 3]] simplices, edges = create_tin(points) print("Simplices:", simplices) print("Edges:", edges) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值