Rubyr代码随想录算法训练营第18天| 513.找树左下角的值、112. 路径总和 、113.路径总和ii 、106.从中序与后序遍历序列构造二叉树 、105.从前序与中序遍历序列构造二叉树

本文介绍了如何使用BFS和DFS方法解决LeetCode中的树问题,如找到树左下角的值,以及如何通过中序和后/前序遍历序列构建二叉树。展示了两种路径总和问题的解决方案。
摘要由CSDN通过智能技术生成

Leetcode 513.找树左下角的值

1) 这道题最开始想出来的就是使用BFS,但是DFS更简单

Method 1: BFS 分层遍历每一层,之后拿到最后一层的最左边的节点

class Solution {
    public int findBottomLeftValue(TreeNode root) {
        if (root == null) {
            return -1;
        }

        if (root.left == null && root.right == null) {
            return root.val;
        }

        Queue<TreeNode> queue = new ArrayDeque<>();
        
        //使用一个变量保存每一层的第一个节点的值
        TreeNode last = null;
        queue.offer(root);

        while (!queue.isEmpty()) {
            int size = queue.size();

            for (int i = 0; i < size; i++) {
                TreeNode node = queue.poll();

                if (i == 0) {
                    last = node;
                }

                if (node.left != null) {
                    queue.offer(node.left);
                }

                if (node.right != null) {
                    queue.offer(node.right);
                }

            }
        }

        return last.val;
        
       
    }
}

Method 2: 使用DFS

class Solution {
    int val = 0;
    int maxDepth = 0;

    public int findBottomLeftValue(TreeNode root) {
        dfs(root, 1);
        return val;
    }

    public void dfs(TreeNode root, int depth) {
        //当遍历和记录左孩子节点,返回向上走,遍历右节点时, maxDepth始终大于或者等于depth
        //所以val的值不变,除非右节点depth增加

        if (root != null) {
            if (maxDepth < depth) {
                maxDepth = depth;
                val = root.val;
            }
            
            dfs(root.left, depth + 1);
            dfs(root.right, depth + 1);
        }

        
    }
}

Leetcode 112. 路径总和

使用递归遍历

class Solution {
    boolean res = false;
    int currSum = 0;
    int target;
    public boolean hasPathSum(TreeNode root, int targetSum) {
        if (root == null) {
            return false;
        }

        this.target = targetSum;

        tranverse(root);
        return res;
    }

    public void tranverse(TreeNode root) {
        if (root == null) {
            return;
        }

        //求和
        currSum += root.val;

        if (root.left == null && root.right == null) {
            if (currSum == target) {
                res = true;
            }
        }

        //遍历做节点
        tranverse(root.left);
        tranverse(root.right);
        currSum -= root.val;

    }
}

Leetcode 113.路径总和ii

class Solution {

    List<List<Integer>> res = new ArrayList<>();

    public List<List<Integer>> pathSum(TreeNode root, int targetSum) {
        if (root == null) {
            return res;
        }

        tranverse(root, targetSum, new ArrayList<>());
        return res;

    }

    public void tranverse(TreeNode root, int targetSum, List<Integer> list) {
        if (root == null) {
            return;
        }

        int currSum = targetSum - root.val;

        if (root.left == null && root.right == null) {
            if (currSum == 0) {
                list.add(root.val);
                 // 这里一定要new ArrayList,浅复制,因为之后list被添加删除,最后结果为空
                res.add(new ArrayList<>(list));
                list.remove(list.size() - 1);
            }

            return;
        }

        list.add(root.val);
        tranverse(root.left, currSum, list);
        tranverse(root.right, currSum, list);
        list.remove(list.size() - 1);
    }
}

Leetcode 106.从中序与后序遍历序列构造二叉树

1)通过后序遍历获取根节点

2)可以通过中序遍历确定左子树节点的起始和右子树的起始索引

class Solution {
    Map<Integer, Integer> map = new HashMap<>();

    public TreeNode buildTree(int[] inorder, int[] postorder) {
        if (inorder.length == 1 && postorder.length == 1) {
            return new TreeNode(inorder[0]);
        }

        for (int i = 0; i < inorder.length; i++) {
            map.put(inorder[i], i);
        }

        return buildProcess(inorder, 0, inorder.length - 1,
                            postorder, 0, postorder.length - 1);
       
    }

    public TreeNode buildProcess(int[] inorder, int instart, int intEnd,
                                 int[] postorder, int postStart, int postEnd) {
        
        
        if (instart > intEnd) {
            return null;
        }

        //get the root and root index
        int rootVal = postorder[postEnd];
        int rootIndex = map.get(rootVal);

        int leftSize = rootIndex - instart;

        TreeNode root = new TreeNode(rootVal);

        root.left = buildProcess(inorder, instart, rootIndex - 1, postorder, postStart, postStart + leftSize - 1);
        root.right = buildProcess(inorder, rootIndex + 1, intEnd, postorder, postStart + leftSize, postEnd - 1);

        return root;
                

     }
}

Leetcode 105.从前序与中序遍历序列构造二叉树

1)通过前序遍历获取根节点

2)可以通过中序遍历确定左子树节点的起始和右子树的起始索引

class Solution {
    Map<Integer, Integer> map = new HashMap<>();

    public TreeNode buildTree(int[] preorder, int[] inorder) {
        if (preorder.length == 1) {
            return new TreeNode(preorder[0]);
        }

        for (int i = 0; i < inorder.length; i++) {
            map.put(inorder[i], i);
        }

        return build(preorder, 0, preorder.length - 1, inorder, 0, inorder.length - 1);
        
    }

    public TreeNode build(int[] preorder, int prestart, int preend, int[] inorder, int instart, int inend) {
        if (prestart > preend || instart > inend) {
            return null;
        }

        int rootVal = preorder[prestart];
        int rootIndex = map.get(rootVal);//the root index in inorder

        TreeNode root = new TreeNode(rootVal);
        int leftSize = rootIndex - instart;

        root.left = build(preorder, prestart + 1, prestart + leftSize, inorder, instart, instart + leftSize - 1);
        root.right = build(preorder, prestart + leftSize + 1, preend, inorder, rootIndex + 1, inend);

        return root;
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值