题目:给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。完全平方数是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
本题和零钱兑换基本一致,完全平方数就是物品,和就是背包容积,我的思路是先求出和的平方根的取整值(也就是物品数组的大小),再按动态规划做法做:
(1)dp数组
dp[j]:和为j的完全平方数的最少数量为dp[j]
(2)递推公式
dp[j] = min(dp[j - i * i] + 1, dp[j])
(3)初始化
dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0,非0下标的dp[j]一定要初始为最大值
(4)遍历顺序
先遍历物品再遍历背包
代码如下:
class Solution {
public:
int numSquares(int n) {
int s = sqrt(n);
vector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 1; i <= s; i++) {
for (int j = i * i; j <= n; j++) {
if (dp[j - i * i] != INT_MAX) {
dp[j] = min(dp[j], dp[j - i * i] + 1);
}
}
}
return dp[n];
}
};