StarRocks——中信建投统一查询服务平台构建

中信建投面临数据加工链路复杂、性能不足等问题,选择StarRocks构建统一查询服务平台。StarRocks以其高性能、MPP架构和预计算能力显著提升大数据查询性能、降低固定报表成本,并简化数据管理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、需求背景

1.1 数据加工链路复杂

1.2 大数据量下性能不足,查询响应慢

1.3 大量实时数据分散在各个业务系统,无法进行联合分析

1.4 缺少与预计算能力加速一些固定查询

二、构建统一查询服务平台

三、落地后的效果与价值

四、项目经验总结


  原文大佬的这篇StarRocks应用实践有借鉴意义,这里摘抄下来用作学习和知识沉淀。

近年来,中信建投重视数据基础设施的建设,对自助分析、多维分析、固定报表和 API 数据服务等形式的用数需求一直在不断增长。

一、需求背景

    中信建投已经在2019年搭建了基于Hadoop 体系的数据湖,用  Hive对数据进行加工处理,所有的查询计算都通过 Presto 执行。但是,该方案在最近两年数据量快速增长、业务场景多样化发展的趋势下逐渐无法适用。具体而言,中信建投目前在数据查询分析中主要存在以下痛点和需求:

1.1 数据加工链路复杂

    在数据分析的流程上,数据部门通常是首先用Presto做即席查询,再通过 Hive进行数据加工,最后将加工过后的数据下发到各部门的 Oracle 或 MySQL 事务型数据库,业务人员在事务数据库里对下发数据进行查询和分析。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值