知乎链接:《高等统计物理学》1:领悟系综
前言 《高等统计物理学》期末总结系列文章,是笔者在期末复习之际,对本学期所学内容的一次全面性回顾,系统地理清知识的逻辑,获得新的感悟。既方便自己日后的查阅和修更,也希望能够为正在修读《高统》的小伙伴们提供一些力所能及的帮助~文章中的不当之处,还望请各路大神不吝指点!
这一部分的内容十分关键,虽然大多数是本科的内容,但是否能够吃透它们,驾驭统计物理和系综的思想,决定了后续学习的有效性和高效性。下面,让我们开始吧~(一定要牢记,我们现在复习的都是平衡态系统!)
0. 必备基础知识
对于一个宏观的孤立系统,一般用 N , V , E N,V,E N,V,E来表征系统的平衡态(更精确地说,系统的能量应该是在一个 E E E 到 E + Δ E E+\Delta E E+ΔE 的范围内,为便于理解,下述内容采用 E来表征 )。
假设有一个系统由大量的全同近独立粒子组成,具有确定的 N , V , E N,V,E N,V,E,则
(1) 对于量子统计(不连续)。可以得到这个系统在微观上的能级分布 ( ε 1 , ε 2 , . . . , ε l , . . . ) ( \varepsilon_1,\varepsilon_2,...,\varepsilon_l,... ) (ε1,ε2,...,εl,...)(即这个多粒子体系中所有单粒子所具有的能级的集合),简并度分布 ( ω 1 , ω 2 , . . . ω l , . . . ) ( \omega_1,\omega_2,...\omega_l,... ) (ω1,ω2,...ωl,...)和粒子数分布 ( α 1 , α 2 , . . . α l , . . . ) ( \alpha_1,\alpha_2,...\alpha_l,... ) (α1,α2,...αl,...),且满足 ∑ i α i = N 和 ∑ i α i ε i = E \sum_{i}^{}\alpha_i=N 和 \sum_{i}\alpha_i\varepsilon_i =E ∑iαi=N和∑iαiεi=E 。要确定这个系统的微观状态数,除了知道 { α i } \{ \alpha_i\} {
αi} 的分布外,还需要对每一个能级 ε i \varepsilon_i εi 确定其 α i \alpha_i αi 个粒子占据其 ω i \omega_i ωi个量子态的方式(特别注意:微观状态和分布是两个不同的概念)。举一个简单的例子:假设系统有2个粒子,粒子的个体量子态有3个,那么,对于玻尔兹曼系统,粒子可以分辨,不受泡利不相容原理约束,所以微观状态数共9种;对于玻色系统,粒子不可分辨,不受泡利不相容原理约束,所以微观状态共6个;对于费米系统,粒子不可分辨,遵从泡利不相容原理,所以微观状态共3个。(注意:个体量子态和能级简并态的区别!能级简并态的意思大概就是有哪些量子态的粒子可以处于这上面吧)如下图所示:
因此,从这里开始,要对一个系统的微观状态数有个认识,即:该系统有多少个能级,每个能级又分布有多少个粒子,每个粒子是如何占据该能级的(即分别处于哪些量子态)。(脑海里可以勾勒出这样一个场景:一个系统,放大到微观尺度,里面有很多不同量子态的粒子,在抖动!在抖动!…并且它们各自组队处在某一个能级上,它们还在不断地变化,各自的量子态,各自的组队,在变化!(他们之间没有相互作用))
对于玻尔兹曼系统, Ω B . M . = N ! ∏ l a l ! ∏ l ω l a l \Omega_{B.M.}=\frac{N!}{\prod_la_l!} \prod_l\omega_{l}^{a_l} ΩB.M.=∏lal!N!∏lωlal ;对于玻色系统, Ω B . E . = ∏ l ( ω l + α l − 1 ) ! α l ! ( ω l − 1 ) ! \Omega_{B.E.}=\prod_{l}\frac{(\omega_l+\alpha_l-1)!}{\alpha_l!(\omega_l-1)!} ΩB.E.=∏lαl!(ωl−1)!(ωl