偏微分方程的类型及求解(一)(备份草稿)

本文详细介绍了不同类型的偏微分方程(PDE)求解方法,包括有界问题、无界问题和半无界问题。针对一维、二维问题,分别阐述了边界齐次、非齐次条件下的分离变量法、傅立叶级数法、齐次化原理和行波法。文中举例说明了如何运用这些方法解决具体问题,并提到了傅立叶变换和拉普拉斯变换在求解过程中的应用。此外,还探讨了无限长弦的振动问题和半无界问题中的端点固定和自由情况。
摘要由CSDN通过智能技术生成

前言 本文是作者对本学期所学《数学物理方程》中涉及偏微分方程求解的知识所进行的一个类型归纳和方法总结,并配合一定数目的例题进行相关练习。
本文将按照偏微分方程的“是否有界”、“维数”和“定解形式”来进行罗列,归纳相应的解法和技巧。这也是拿到一个偏微分方程时应该有的第一反应,即一层一层地判断出定解问题的形式属于哪一类。
由于知乎文章篇幅不易过长,本文的附录部分请读者参见《偏微分方程的类型及求解》(二)。
目录
一. 有界问题
1.1 一维问题
1.1.1 边界齐次、方程齐次问题(分离变量法)
1.1.2 边界齐次、 方程非齐次问题(傅立叶级数法;齐次化原理方法)
1.1.3 边界非齐次次、方程齐次/非齐次问题 (齐次化方法)
1.2 二维问题
1.2.1 圆域拉式方程定解问题(分离变量法)
1.2.2 矩型域定解问题(分离变量法)
1.3 三维问题(待更…)
二. 无界问题
2.1 一维问题
2.1.1 方程齐次问题(行波法(公式);傅里叶变换法)
2.1.2 无限长弦纯强迫振动的方程非齐次问题(齐次化+行波法(公式);傅里叶变换法)
2.1.3 无限长弦一般强迫振动的方程非齐次问题(齐次化+行波法;傅里叶变换法)
2.1.4 无限长弦有阻尼振动的方程非齐次问题(因子处理+行波法(公式);傅里叶变换法)
2.2 二维问题(待更…)
2.3 三维问题(待更…)
三. 半无界问题
3.1 一维问题
3.1.1 端点固定的方程齐次问题(延拓法、拉普拉斯变换法)
3.1.2 端点自由的方程齐次问题(行波法、拉普拉斯变换法)
3.2 二维问题(待更…)
3.3 三维问题(待更…)
四. 附录
4.1 傅立叶变换的性质(11个)
4.2 拉普拉斯变换的性质(10个)
4.3 Bessel函数
4.3.1 Bessel方程; 4.3.2 第一类Bessel函数及其性质; 4.3.3 第二类Bessel函数及其性质; 4.3.4 定理
4.4 Legendre多项式
4.4.1 Legendre方程; 4.4.2 第一类Legendre函数及其性质; 4.3.3 定理
4.5 Green函数法
4.6 方程的化简
4.7 定解问题的建模

一. 有界问题
1.1 一维问题
1.1.1 边界齐次、方程齐次问题
问题形式例举
\left{ \begin{equation} \begin{aligned} &u_{tt}=a^2u_{xx}\quad(0<x<L,t>0)\ &u|{x=0}=0,u|{x=L}=0\ &u|{t=0}=\varphi(x),u_t|{t=0}=\psi(x) \end{aligned} \end{equation} \right.
\left{ \begin{equation} \begin{aligned} &u_{t}=a^2u_{xx}\quad(0<x<L,t>0)\ &u|{x=0}=0,u|{x=L}=0\ &u|_{t=0}=\varphi(x) \end{aligned} \end{equation} \right.
从上面可以看出,一般定解问题中 关于t 的求导阶数,即为关于t的定解条件的个数。
求解方法
(1)分离变量法
step 1: 分离变量;(构造等式时,固有值和不含导的参数项结合,因此一般含导参数项作分子。思想是:将未知的多元函数假设为若干一元函数之积,把偏微分方程转化为求解常微分方程)
step 2: 求解固有值问题;( 步骤大致为:构造特征方程 \rightarrow 求出特征根 \rightarrow 得原方程的特解 \rightarrow 得原方程的通解 \rightarrow 代入边界条件得固有值和固有函数。思想是:因为方程是线性方程,因此它的各特解的线性组合也是方程的解)
step 3: 求解其它常微分方程对应于固有值的解;(也就是 T_n(t) 或者其他,此时已经知道了固有值,所以会容易很多)
step 4: 写出叠加解, 利用其余条件定出叠加系数。
例题

  1. 教材P59 3.1-3-(4),求 \left{ \begin{equation} \begin{aligned} &X’’+\beta^2X=0\ &X|{x=0}=0,[X’+hX]{x=L}=0 \end{aligned} \end{equation} \right.的固有值和固有函数。
    答案:固有值 \beta_n 满足 \operatorname{tan}\beta_n L=-\frac{\beta_n}{h} ,固有函数X_n(x)=\operatorname{sin}\beta_nx,\beta_n=0,1,2,…。
    知识点:(1)欧拉公式 e^{i \theta}=\operatorname{cos} \theta+i\operatorname{sin}\theta ,因此,对 e^{i \theta} 和 e^{-i \theta} 做加减组合可以很容易得到 \operatorname{sin} \theta=\frac{e^{i \theta}-e^{-i \theta}}{2i},\operatorname{cos} \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} 。之所以 \Delta<0 时,得到的 C_1e^{i \beta x}+C_2e^{-i\beta x} 可以写成 C_1 \operatorname{cos} \beta x+C_2\operatorname{sin} \beta x 是因为对两个特解又做了 \overline{y_1}=\frac{1}{2}(y_1+y_2),\overline{y_2}=\frac{1}{2i}(y_1-y_2)的线性组合;(2)对于 \Delta=0 有重根的情况,这里重根的特解分别为 e{ex},xe{rx},x^2 e^{rx},… (固有套路…),然后同样对他们进行线性组合即可,所以这道题中 \Delta=0 时有二重根特解的通解为 y=(C_1+C_2x)e^{rx} 。
  2. 教材P62 3.2-3,
  3. 教材P62 3.2-4,求定解问题 \left{ \begin{equation} \begin{aligned} &u_t=a^2u_{xx}-bu,0<x<\pi,t>0\ &u_x|{x=0}=0,u_x|{x=\pi}=0\ &u|{t=0}=x \end{aligned} \end{equation} \right.
  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值