线性方程组的类型及求解(二)(备份草稿)

续《线性方程组的类型及求解》(一)。接着,我们再来复习一下不相容线性方程组(超定方程组)的解法。
五. 最小二乘解法
当方程组不相容时,我们可以寻求次佳(next-best)解。

  1. 模型
    将原不相容方程组 Ax\neq b 转换为正规方程组 ATAx=ATb 。
    首先构造原不相容方程组的最小二乘解 argmin_{x}|Ax-b|_2^2 ,从而将原问题转换为求残差二范数最小的优化问题(注意此处用 argmin 是因为即便在 f(x) 后带上常数,但关心的最小值点不变,二如果使用 min 则会改变最小值); 再令 f(x)=(Ax-b)^T(Ax-b) (这是技巧,对于矩阵,要构造“平方”则用转置来乘),展开得 f(x)=xTATAx-2bTAx+bTb (注意化简过程中, (bTAx)T=xTATb ,因为等式两边结果都是一个数); 接着对上式求梯度 f’(x)=(xTATAx-2bTAx+bTb)’=2ATAx-2ATb=0 (技巧:类比代数 f’(x)=(\frac{1}{2}ax^2-bx)’=ax-b ,对于矩阵情形 gradf(x)=(\frac{1}{2}xTAx-bTx)’=Ax-b )。 最后得到原不相容(超定)方程的正规方程形式: ATAx=ATb 。 该模型的价值在于可以直接根据具体问题写出最终的求解形式,参见PPT14的第14页。
  2. 定理
    不相容方程的最小二乘解总是存在的。
    证明:PPT14的第18页。
  3. 应用场景
    在统计学中,根据实验样本进行数据拟合时往往会求解超定方程。在许多实际问题中,由于变量和变量之间的关系比较复杂,需要考虑问题背景所涉及的数学模型,观察数据散点的分布,选取不同函数做实验,以获得比较成功的数据拟合。下面介绍集中拟合函数:
    (1) y(x)=C_0+C_1 x
    (2) y(x)=C_0+C_1x+…+C_nx^n
    (3) y(x)=C_0\varphi_0(x)+C_1\varphi_1(x)+…+C_n\varphi_n(x)
    (4) y(x)=C_0e^{C_1x} (线性化处理后为 \ln y(x)=\ln C_0+C_1\ln x )
    PPT14的例题1
    (5) y(x)=x^C
    PPT14的例题2
    最小二乘法与插值法有着类似的作用,但其之间也存在着一些本质的差别,插值法的相关知识可以在《机器学习数学基础》中查阅。
    六. 广义逆解法

七. 附录
一. 矩阵分解
1.1 奇异值分解( A \in \mathbb{C}r^{m \times n} )
1.1.1 定义; 1.1.2 性质; 1.1.3 分解定理和步骤; 1.1.4 奇异值的分析;
1.1.5 奇异值的几何意义;1.1.6 重要定理
1.2 谱分解(A \in \mathbb{C}^{n \times n})
1.2.1 形式一:单纯矩阵 1.2.1.1 定义;1.2.1.2 单纯矩阵的谱分解; 1.2.1.3 定理
1.2.2 形式二:正规矩阵 1.2.2.1 定义; 1.2.2.2 引理; 1.2.2.3 正规矩阵的谱分解; 1.2.2.4 定理
1.3 最大秩分解( A \in \mathbb{C}r^{m \times n} )
1.3.1分解定理和步骤; 1.3.2 定理;
二. 向量与矩阵的范数
2.1 向量范数
2.1.1 定义; 2.1.2 简单性质; 2.1.3 常用向量范数; 2.1.4 向量范数的等价; 2.1.5 向量范数的应用
2.2 矩阵范数
2.2.1 定义; 2.2.2 简单性质; 2.2.3 范数的等价; 2.2.4 范数的相容
2.3 算子范数
2.3.1 定义; 2.3.2 简单性质; 2.3.3 常用算子范数; 2.3.4 广义算子范数
2.4 酉不变范数
2.4.1 定义; 2.4.2 例子
三. 特征值的估计
一. 矩阵分解
1.1 奇异值分解
1.1.1 定义
设 A \in \mathbb{C}
{r}^{m \times n} , A^HA 的特征值为 \lambda_1 \geq\lambda_2 \geq…\geq\lambda_r >\lambda
{r+1}=…=\lambda_n=0 ,则称 \sigma_i=\sqrt{\lambda_i}(i=1,2,…,r) 为矩阵 A 的正奇异值。
1.1.2 性质
(1) A 与 A^H 有相同的正奇异值。
该性质来源于定理:设 A \in \mathbb{C}_r^{m \times n} ,则有(1) rank(A)=rank(AHA)=rank(AHA); (2) A^HA 、 AA^H 的特征值均为非负实数;(3)A^HA 、 AA^H 的非零特征值相同。该定理的证明在教材P118-119页
(2)若 A

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值