偏微分方程基础


微分方程可以粗略地分为常微分方程(ODE)和偏微分方程(PDE),常微分方程只有一个自变量,这个自变量通常为时间;偏微分方程则有多个自变量

1. 一些定义

1.1 Order

偏微分中最高阶导数的阶(Order)就是偏微分的阶

图中三个偏微分方程的阶都是3,可以看到,红色部分的阶就是最高阶

1.2 Degree

偏微分方程最高阶导数的指数,即为这个方程的degree
在这里插入图片描述
上图的degree为5
在这里插入图片描述
这里虽然有更高的指数,但注意我们取的是最高阶导数的指数,所以是4

1.3 Linear

如果一个偏微分方程的系数都是自变量或常数,即所有的未知函数和偏导数都是线性的,则称其为线性偏微分方程,示例如下:

在这里插入图片描述

相反,如果有非线性的偏导数,那么它就不是线性的,示例如下:
在这里插入图片描述

1.4 Homogeneous

我们称一个所有项的degree都相同的偏微分方程为齐次偏微分方程,注意,这里的项要和1.2中提到的区分开来,在这里,一个项的degree不是只看最高阶导数的,示例如下:

在这里插入图片描述

上面是两个齐次偏微分方程,右边的式子中, u x u y x u_xu_{yx} uxuyx被视为一个二次项

接下来是两个非齐次的偏微分方程,一个线性,一个非线性,示例如下:
在这里插入图片描述
这里要注意,单独一个未知量x与u的degree是不同的

1.5 常用的偏微分方程

我们在工程中主要使用的拉普拉斯,波动方程,热力方程都是线性齐次的偏微分方程

他们的表达式如下:
在这里插入图片描述

2. 简单偏微分方程的解法

2.1 ODE回顾

解偏微分方程的思想之一是将其转化为常微分方程,这里简单回顾一下常微分方程的解法:

假设我们有一个ODE: y ′ ′ + a y ′ + b y = 0 y''+ay'+by=0 y+ay+by=0
当a,b都为常数时,这个常微分方程的特性方程为 λ 2 + a λ + b \lambda^2+a\lambda+b λ2+aλ+b

解出方程的解 λ 1 , λ 2 \lambda_1, \lambda_2 λ1,λ2

如果根为不相等的两个实数,则通解为:
y = c 1 e λ 1 x + c 2 e λ 2 x y=c_1e^{\lambda_1x}+c_2e^{\lambda_2x} y=c1eλ1x+c2eλ2x

如果根为两个相等的实数,则通解为:
y = ( c 1 + c 2 x ) e λ x y=(c_1+c_2x)e^{\lambda x} y=(c1+c2x)eλx

如果根为一对共轭的复数 λ \lambda λ, λ ‾ \overline{\lambda} λ,则通解为:
y = e R e ( λ ) x [ c 1 c o s ( I m λ x ) + c 2 s i n ( I m λ x ) ] y=e^{Re(\lambda)x}[c_1cos(Im\lambda x)+c_2sin(Im\lambda x)] y=eRe(λ)x[c1cos(Imλx)+c2sin(Imλx)]

2.2 例1

u x x − u = 0 , u_{xx}-u=0, uxxu=0,u是自变量为x和y的函数
由于里面没有对y求导的项,我们可以将其当作形如 u ′ ′ − u = 0 u''-u=0 uu=0的ODE来解,操作如下:

u ′ ′ − u = 0 u''-u=0 uu=0,得
λ 2 − 1 = 0 \lambda^2-1=0 λ21=0
上式可以解出两个不相等的实数根 − 1 , 1 -1,1 1,1,因此,得到ODE的通解为
u = A e x + B e − x u=Ae^x+Be^{-x} u=Aex+Bex
这里的A和B可能是参数为y的函数,因此最终得到的结果为
u ( x , y ) = A ( y ) e x + B ( y ) e − x u(x,y)=A(y)e^x+B(y)e^{-x} u(x,y)=A(y)ex+B(y)ex
如果遇到 u X u \frac{u_X}{u} uuX之类的东西,记住
∫ ( u x u ) = l o g \int({\frac{u_x}{u}})=log (uux=log

2.3 例2

我们并不能总是将PDE当作ODE来计算,毕竟不是每个式子都只对一个参数求导的。但是,对两个参数求导的式子通常会给出多种情况,这时,我们可以用分离变量法找到PDE的解

在这里插入图片描述
假设一个PDE满足上图的两种情况,对此,我们首先将u(x,y)表达为
u ( x , y ) = X ( x ) Y ( y ) u(x,y)=X(x)Y(y) u(x,y)=X(x)Y(y)
微分的转化关系为
∂ u ∂ x = X ′ Y \frac{\partial u}{\partial x}=X'Y xu=XY
∂ u ∂ y = Y ′ X \frac{\partial u}{\partial y}=Y'X yu=YX
额外的,还有
∂ 2 u ∂ x 2 = X ′ ′ Y \frac{\partial^2 u}{\partial x^2}=X''Y x22u=XY
将变量分离后的u代回到原式中,得到
X ′ 4 X = Y ′ Y = c \frac{X'}{4X}=\frac{Y'}{Y}=c 4XX=YY=c
这里的c是一个常数???,因此,我们推导出
X ′ − 4 c X = 0 X'-4cX=0 X4cX=0
Y ′ − c Y = 0 Y'-cY=0 YcY=0
上面两个式子就是两个标准的ODE,解出
X ( x ) = A e 4 c x X(x)=Ae^{4cx} X(x)=Ae4cx
Y ( y ) = B e c x Y(y)=Be^{cx} Y(y)=Becx
其中的c,A,B可以是任意的常数
找到X(x)和Y(y)后,PDE的表达式可以写成
u ( x , y ) = k e c ( 4 x + y ) u(x,y)=ke^{c(4x+y)} u(x,y)=kec(4x+y)
其中 k = A B k=AB k=AB

接着,我们需要将之前列出的另一种状态代入这个表达式中
u 1 ( x , y ) = k 1 e c 1 ( 4 x + y ) u_1(x,y)=k_1e^{c_1(4x+y)} u1(x,y)=k1ec1(4x+y)满足 u ( 0 , y ) = 8 e − 3 y u(0,y)=8e^{-3y} u(0,y)=8e3y,可以得到
k 1 e − 3 y = 8 e − 3 y k_1e^{-3y}=8e^{-3y} k1e3y=8e3y
解出 k 1 = 8 k_1=8 k1=8, c 1 = − 3 c_1=-3 c1=3,得到
u 1 ( x , y ) = 8 e − 3 ( 4 x + y ) u_1(x,y)=8e^{-3(4x+y)} u1(x,y)=8e3(4x+y)

用同样的方法,假设
u 2 ( x , y ) = k 2 e c 1 ( 4 x + y ) u_2(x,y)=k_2e^{c_1(4x+y)} u2(x,y)=k2ec1(4x+y)
u ( 0 , y ) = 4 e − 5 y u(0,y)=4e^{-5y} u(0,y)=4e5y
可以得到 k 2 , c 2 k_2, c_2 k2,c2
u 2 ( x , y ) = 4 e − 5 ( 4 x + y ) u_2(x,y)=4e^{-5(4x+y)} u2(x,y)=4e5(4x+y)
根据线性齐次PDE的定义,得到
u ( x , y ) = u 1 ( x , y ) + u 2 ( x , y ) u(x,y)=u_1(x,y)+u_2(x,y) u(x,y)=u1(x,y)+u2(x,y)

工程中常用到的波动方程就是用这种分离变量法求解的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值