偏微分方程(Partial Differential Equation III)


偏微分方程(Partial Differential Equation I)
偏微分方程(Partial Differential Equation II)
偏微分方程(Partial Differential Equation III)
偏微分方程(Partial Differential Equation IV)


参考文献:

《数学物理方程》| 季孝达
《数学物理方法》| 吴崇试
《数学物理方法》| 梁昆淼
MOOC北京大学《数学物理方法》| 吴崇试 、高春媛

积分变换法

在积分变换中我们曾用拉普拉斯变换方法求解常微分方程。经过变换,常微分方程变为代数方程,解出代数方程,再进行反演就得常微分方程的解。积分变换在数学物理方程中亦有广泛的应用。

傅里叶变换法

傅里叶变换法常用于求解无界空间(含一维半无界空间)定解问题。本节通过几个例子给出几个重要的解的公式。

Fourier 积分定理:若 f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上满足:
(1) 在任一有限区间上满足狄利克雷(Dirichlet)条件1
(2) 在无限区间 ( − ∞ , + ∞ ) (-∞,+∞) (,+)上绝对可积,即 ∫ − ∞ + ∞ ∣ f ( x ) ∣ d x \displaystyle\int_{-∞}^{+∞}|f(x)| dx +f(x)dx 收敛
那么,对任意 x ∈ ( − ∞ , + ∞ ) x\in(-\infty,+\infty) x(,+)
f ( x ) = 1 2 π ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( τ ) e − i k τ d τ ] e i k x d k (1.1) \displaystyle f(x)=\dfrac{1}{2\pi}\int_{-∞}^{+∞}[\int^{+∞}_{-∞}f(τ)e^{-ik τ}\text{d}τ]e^{ikx}\text{d}k \tag{1.1} f(x)=2π1+[+f(τ)eikτdτ]eikxdk(1.1)
在间断点处,上式左端为 1 2 [ f ( x − ) + f ( x + ) ] \frac{1}{2}[f(x^-)+f(x^+)] 21[f(x)+f(x+)]

Fourier 变换:如果函数 f ( x ) f(x) f(x) 满足Fourier 积分定理,由式 (1.1) 知,令
F ( k ) = ∫ − ∞ + ∞ f ( x ) e − i k x d x (1.2) \displaystyle F(k)=\int^{+∞}_{-∞}f(x)e^{-ikx}\text{d}x \tag{1.2} F(k)=+f(x)eikxdx(1.2)
则有
f ( x ) = 1 2 π ∫ − ∞ + ∞ F ( k ) e i k x d k (1.3) \displaystyle f(x)=\dfrac{1}{2\pi}\int_{-∞}^{+∞}F(k)e^{ik x}\text{d}k \tag{1.3} f(x)=2π1+F(k)eikxdk(1.3)
从上面两式可以看出, f ( x ) f(x) f(x) F ( k ) F(k) F(k) 通过确定的积分运算可以互相转换。 F ( k ) F(k) F(k)称为 f ( x ) f(x) f(x) Fourier 变换(Fourier transform),或象函数(image function),记为 F ( k ) = F [ f ( x ) ] F(k)=\mathcal{F}[f(x)] F(k)=F[f(x)] f ( x ) f(x) f(x)称为 F ( k ) F(k) F(k) Fourier 逆变换(inverse Fourier transform),或象原函数(original image function),记为 f ( x ) = F − 1 [ F ( k ) ] f(x)=\mathcal{F}^{-1}[F(k)] f(x)=F1[F(k)] ;通常称 f ( x ) f(x) f(x) F ( k ) F(k) F(k)构成一个Fourier 变换对(transform pair),记作 f ( x ) ↔ F ( k ) f(x)\lrarr F(k) f(x)F(k)

示例:求函数 f ( x ) = e − b x 2 f(x)=e^{-bx^2} f(x)=ebx2 的傅里叶变换,其中常数 b > 0 b>0 b>0
解:由定义和分部积分得
F ( k ) = ∫ − ∞ + ∞ f ( x ) e − i k x d x = ∫ − ∞ + ∞ e − i k x − b x 2 d x = − 1 i k e − i k x − b x 2 ∣ − ∞ + ∞ − 1 i k ∫ − ∞ + ∞ 2 b x e − i k x − b x 2 d x = 2 b i k F [ x f ( x ) ] = − 2 b k d d k F ( k ) \begin{aligned} F(k)&=\int^{+∞}_{-∞}f(x)e^{-ikx}dx=\int^{+∞}_{-∞}e^{-ikx-bx^2}dx \\ &=-\frac{1}{\mathrm ik}e^{-ikx-bx^2}\Big|_{-∞}^{+∞} -\frac{1}{\mathrm ik}\int^{+∞}_{-∞}2bxe^{-ikx-bx^2}dx \\ &=\frac{2b\mathrm i}{k}\mathcal F[xf(x)] =-\frac{2b}{k}\frac{\mathrm d}{\mathrm dk}F(k) \end{aligned} F(k)=+f(x)eikxdx=+eikxbx2dx=ik1eikxbx2+ik1+2bxeikxbx2dx=k2biF[xf(x)]=k2bdkdF(k)
k = 0 k=0 k=0 可得
F ( 0 ) = ∫ − ∞ + ∞ e − b x 2 d x = π b F(0)=\int^{+∞}_{-∞}e^{-bx^2}dx=\sqrt{\frac{\pi}{b}} F(0)=+ebx2dx=bπ
转化为解常微分方程初值问题
{ F ′ ( k ) + k 2 b F ( k ) = 0 F ( 0 ) = π b \begin{cases} F'(k)+\cfrac{k}{2b}F(k)=0 \\ F(0)=\sqrt{\cfrac{\pi}{b}} \end{cases} F(k)+2bkF(k)=0F(0)=bπ
其解为
F ( k ) = π b exp ⁡ ( − k 2 4 b ) F(k)=\sqrt{\cfrac{\pi}{b}}\exp(-\frac{k^2}{4b}) F(k)=bπ exp(4bk2)

F [ e − b x 2 ] = π b exp ⁡ ( − k 2 4 b ) ( b > 0 ) (1.4) \mathcal F[e^{-bx^2}]=\sqrt{\cfrac{\pi}{b}}\exp(-\frac{k^2}{4b})\quad (b>0)\tag{1.4} F[ebx2]=bπ exp(4bk2)(b>0)(1.4)
特别的,取 b = 1 4 c 2 t b=\cfrac{1}{4c^2t} b=4c2t1 时,有
F [ exp ⁡ ( − x 2 4 c 2 t ) ] = 2 c π t e − c 2 k 2 t (1.5) \mathcal F[\exp(-\frac{x^2}{4c^2t})]=2c\sqrt{\pi t}e^{-c^2k^2t}\tag{1.5} F[exp(4c2tx2)]=2cπt ec2k2t(1.5)
逆变换为
F − 1 [ e − c 2 k 2 t ] = 1 2 c π t exp ⁡ ( − x 2 4 c 2 t ) (1.6) \mathcal F^{-1}[e^{-c^2k^2t}]=\frac{1}{2c\sqrt{\pi t}}\exp(-\frac{x^2}{4c^2t})\tag{1.6} F1[ec2k2t]=2cπt 1exp(4c2tx2)(1.6)
由式 (1.4) 还可以得到
∫ 0 + ∞ e − b x 2 cos ⁡ k x d x = 1 2 π b exp ⁡ ( − k 2 4 b ) (1.7) \int^{+∞}_{0}e^{-bx^2}\cos kx\mathrm dx =\frac{1}{2}\sqrt{\cfrac{\pi}{b}}\exp(-\frac{k^2}{4b})\tag{1.7} 0+ebx2coskxdx=21bπ exp(4bk2)(1.7)
多重傅里叶变换:设 x = ( x 1 , x 2 , ⋯   , x n ) ∈ R n , k = ( k 1 , k 2 , ⋯   , k n ) , d x = d x 1 d x 2 ⋯ d x n \mathbf x=(x_1,x_2,\cdots,x_n)\in\R^n,\mathbf k=(k_1,k_2,\cdots,k_n),\mathrm d\mathbf x=dx_1dx_2\cdots dx_n x=(x1,x2,,xn)Rn,k=(k1,k2,,kn),dx=dx1dx2dxn。若 f ( x ) f(\mathbf x) f(x) R n \R^n Rn 上连续,分片光滑且连续可积,令
F ( k ) = ∫ R n f ( x ) e − i k ⋅ x d x (1.8) F(\mathbf k)=\int_{\R^n}f(\mathbf x)e^{-\mathrm i\mathbf{k\cdot x}}d\mathbf x\tag{1.8} F(k)=Rnf(x)eikxdx(1.8)
则有
f ( x ) = 1 ( 2 π ) n ∫ R n F ( k ) e i k ⋅ x d k (1.9) f(\mathbf x)=\frac{1}{(2\pi)^n}\int_{\R^n}F(\mathbf k)e^{\mathrm i\mathbf{k\cdot x}}d\mathbf k\tag{1.9} f(x)=(2π)n1RnF(k)eikxdk(1.9)
其中 F ( k ) F(\mathbf k) F(k) 称为 f ( x ) f(\mathbf x) f(x)多重傅里叶变换,记为 F ( k ) = F [ f ( x ) ] F(\mathbf k)=\mathcal{F}[f(\mathbf x)] F(k)=F[f(x)] f ( x ) f(\mathbf x) f(x) 称为 F ( k ) F(\mathbf k) F(k)多重傅里叶逆变换,记为 f ( x ) = F − 1 [ F ( k ) ] f(\mathbf x)=\mathcal{F}^{-1}[F(\mathbf k)] f(x)=F1[F(k)]

求无限长弦的初值问题
{ u t t − a 2 u x x = 0 u ∣ t = 0 = ϕ ( x ) , ∂ u ∂ t ∣ t = 0 = ψ ( x ) \begin{cases} u_{tt}-a^2u_{xx}=0 \\ u|_{t=0}=\phi(x),\cfrac{∂u}{∂t}|_{t=0}=\psi(x) \end{cases} utta2uxx=0ut=0=ϕ(x),tut=0=ψ(x)
其中 ϕ ( x ) , ψ ( x ) \phi(x),\psi(x) ϕ(x),ψ(x) 分别表示初始位移和初始速度。
解:应用傅里叶变换,即方程及初始条件两边同乘以 e − i k x e^{-\mathrm ikx} eikx ,并对空间变量 x x x 进行积分(时间变量 t t t 视作参数)。
U ( k , t ) = F [ u ( x , t ) ] = ∫ − ∞ + ∞ u ( x , t ) e − i k x d x U(k,t)=\mathcal{F}[u(x,t)]\displaystyle=\int^{+∞}_{-∞}u(x,t)e^{-\mathrm ikx}dx U(k,t)=F[u(x,t)]=+u(x,t)eikxdx ,运用用含参变量的积分及傅里叶变换的微分性质

则定解问题变为关于 t t t 的常微分方程及初值条件
{ U ′ ′ + k 2 a 2 U = 0 U ( 0 ) = Φ ( k ) , U ′ ( 0 ) = Ψ ( k ) \begin{cases} U''+k^2a^2U=0 \\ U(0)=\Phi(k),U'(0)=\Psi(k) \end{cases} {U+k2a2U=0U(0)=Φ(k),U(0)=Ψ(k)
其中 Φ ( k ) = F [ ϕ ( x ) ] , Ψ ( k ) = F [ ψ ( x ) ] \Phi(k)=\mathcal{F}[\phi(x)],\quad\Psi(k)=\mathcal{F}[\psi(x)] Φ(k)=F[ϕ(x)],Ψ(k)=F[ψ(x)] 分别是 ϕ ( x ) , ψ ( x ) \phi(x),\psi(x) ϕ(x),ψ(x) 关于 x x x 的傅里叶变换。其解为
U ( k , t ) = Φ ( k ) cos ⁡ k a t + 1 k a Ψ ( k ) sin ⁡ k a t U(k,t)=\Phi(k)\cos kat+\cfrac{1}{ka}\Psi(k)\sin kat U(k,t)=Φ(k)coskat+ka1Ψ(k)sinkat

最后,对 U ( k , t ) U(k,t) U(k,t) 做傅里叶逆变换,用延迟性质和积分性质,结果是
u ( x , t ) = 1 2 [ ϕ ( x + a t ) + ϕ ( x − a t ) ] + 1 2 a ∫ x − a t x + a t ψ ( ξ ) d ξ u(x,t)=\frac{1}{2}[\phi(x+at)+\phi(x-at)]+\frac{1}{2a}\int_{x-at}^{x+at}\psi(ξ)dξ u(x,t)=21[ϕ(x+at)+ϕ(xat)]+2a1xatx+atψ(ξ)dξ
这个公式正是达朗贝尔(d’Alembert)公式。

求无限长杆的有源热传导问题
{ u t − a 2 u x x = f ( x , t ) u ∣ t = 0 = ϕ ( x ) \begin{cases} u_{t}-a^2u_{xx}=f(x,t) \\ u|_{t=0}=\phi(x) \end{cases} {uta2uxx=f(x,t)ut=0=ϕ(x)
解:做傅里叶变换,定解问题变为
{ U ′ + k 2 a 2 U = F ( k , t ) U ( 0 ) = Φ ( k ) \begin{cases} U'+k^2a^2U=F(k,t) \\ U(0)=\Phi(k) \end{cases} {U+k2a2U=F(k,t)U(0)=Φ(k)
其中 U ( k , t ) = F [ u ( x , t ) ] , F ( k , t ) = F [ f ( x , t ) ] , Φ ( k ) = F [ ϕ ( x ) ] U(k,t)=\mathcal{F}[u(x,t)],\quad F(k,t)=\mathcal{F}[f(x,t)],\quad\Phi(k)=\mathcal{F}[\phi(x)] U(k,t)=F[u(x,t)],F(k,t)=F[f(x,t)],Φ(k)=F[ϕ(x)] 分别是 u ( x , t ) , f ( x , t ) , ϕ ( x ) u(x,t),f(x,t),\phi(x) u(x,t),f(x,t),ϕ(x) 关于 x x x 的傅里叶变换。这个常微分方程初值问题的解为
U ( k , t ) = Φ ( k ) e − k 2 a 2 t + ∫ 0 t F ( k , τ ) e − k 2 a 2 ( t − τ ) d τ U(k,t)=\Phi(k)e^{-k^2a^2t}+\int_0^tF(k,\tau)e^{-k^2a^2(t-\tau)}d\tau U(k,t)=Φ(k)ek2a2t+0tF(k,τ)ek2a2(tτ)dτ

最后,对 U ( k , t ) U(k,t) U(k,t) 做傅里叶逆变换,用卷积定理,结果是
u ( x , t ) = ∫ − ∞ + ∞ ϕ ( ξ ) 1 2 a π t exp ⁡ [ − ( x − ξ ) 2 4 a 2 t ] d ξ + ∫ 0 t ∫ − ∞ + ∞ f ( ξ , τ ) 2 a π ( t − τ ) exp ⁡ [ − ( x − ξ ) 2 4 a 2 ( t − τ ) ] d ξ d τ u(x,t)=\int_{-\infty}^{+\infty}\phi(\xi) \frac{1}{2a\sqrt{\pi t}}\exp[-\frac{(x-\xi)^2}{4a^2t}]d\xi +\int_0^t\int_{-\infty}^{+\infty}\frac{f(\xi,\tau)}{2a\sqrt{\pi (t-\tau)}} \exp[-\frac{(x-\xi)^2}{4a^2(t-\tau)}]d\xi d\tau u(x,t)=+ϕ(ξ)2aπt 1exp[4a2t(xξ)2]dξ+0t+2aπ(tτ) f(ξ,τ)exp[4a2(tτ)(xξ)2]dξdτ

傅里叶正弦变换或余弦变换:如果 f ( x ) f(x) f(x) 定义在半无界区间 [ 0 , + ∞ ) [0,+\infty) [0,+) 上,满足狄利克雷(Dirichlet)条件1且绝对可积,则有傅里叶正弦变换
F ( k ) = ∫ 0 + ∞ f ( x ) sin ⁡ k x d x f ( x ) = 1 2 π ∫ 0 + ∞ F ( k ) sin ⁡ k x d k F(k)=\int^{+∞}_{0}f(x)\sin kx\text{d}x \\f(x)=\dfrac{1}{2\pi}\int_{0}^{+∞}F(k)\sin kx\text{d}k F(k)=0+f(x)sinkxdxf(x)=2π10+F(k)sinkxdk
或余弦变换
G ( k ) = ∫ 0 + ∞ g ( x ) cos ⁡ k x d x g ( x ) = 1 2 π ∫ 0 + ∞ G ( k ) cos ⁡ k x d k G(k)=\int^{+∞}_{0}g(x)\cos kx\text{d}x \\ g(x)=\dfrac{1}{2\pi}\int_{0}^{+∞}G(k)\cos kx\text{d}k G(k)=0+g(x)coskxdxg(x)=2π10+G(k)coskxdk
对于半无界空间,存在自然边界条件
lim ⁡ x → ∞ f ( x ) = 0 , lim ⁡ x → ∞ f ′ ( x ) = 0 \lim\limits_{x\to\infty}f(x)=0,\quad \lim\limits_{x\to\infty}f'(x)=0 xlimf(x)=0,xlimf(x)=0
可以采用正弦变换或余弦变换,对于正弦变换
导数的正弦变换为
∫ 0 + ∞ f ′ ( x ) sin ⁡ k x d x = f ( x ) sin ⁡ k x ∣ 0 + ∞ − k ∫ 0 + ∞ f ( x ) cos ⁡ k x d x = − k ∫ 0 + ∞ f ( x ) cos ⁡ k x d x \begin{aligned} & \int^{+∞}_{0}f'(x)\sin kx\text{d}x \\ =& f(x)\sin kx\Big|_0^{+∞}-k\int^{+∞}_{0}f(x)\cos kx\text{d}x \\ =& -k\int^{+∞}_{0}f(x)\cos kx\text{d}x \end{aligned} ==0+f(x)sinkxdxf(x)sinkx0+k0+f(x)coskxdxk0+f(x)coskxdx
二阶导正弦变换为
∫ 0 + ∞ f ′ ′ ( x ) sin ⁡ k x d x = − k ∫ 0 + ∞ f ′ ( x ) cos ⁡ k x d x = − k [ f ( x ) cos ⁡ k x ∣ 0 + ∞ + k ∫ 0 + ∞ f ( x ) sin ⁡ k x d x ] = k f ( 0 ) − k 2 F ( k ) \begin{aligned} & \int^{+∞}_{0}f''(x)\sin kx\text{d}x \\ =& -k\int^{+∞}_{0}f'(x)\cos kx\text{d}x \\ =& -k[f(x)\cos kx\Big|_0^{+∞}+k\int^{+∞}_{0}f(x)\sin kx\text{d}x] \\ =& kf(0)-k^2F(k) \end{aligned} ===0+f(x)sinkxdxk0+f(x)coskxdxk[f(x)coskx0++k0+f(x)sinkxdx]kf(0)k2F(k)

由此可见,对于二阶偏微分方程的定解问题,只有在半无界空间的 x = 0 x=0 x=0 端给出第一类边界条件时,才可以采用正弦变换。

同样对于余弦变换,也有
∫ 0 + ∞ g ′ ( x ) cos ⁡ k x d x = − g ( 0 ) + k ∫ 0 + ∞ g ( x ) sin ⁡ k x d x ∫ 0 + ∞ g ′ ′ ( x ) cos ⁡ k x d x = − g ′ ( 0 ) − k 2 G ( k ) \int^{+∞}_{0}g'(x)\cos kx\text{d}x=-g(0)+k\int^{+∞}_{0}g(x)\sin kx\text{d}x \\ \int^{+∞}_{0}g''(x)\cos kx\text{d}x=-g'(0)-k^2G(k) 0+g(x)coskxdx=g(0)+k0+g(x)sinkxdx0+g(x)coskxdx=g(0)k2G(k)
由此可见,对于二阶偏微分方程的定解问题,只有在半无界空间的 x = 0 x=0 x=0 端给出第二类边界条件时,才可以采用余弦变换。

求半无界杆的热传导问题
{ u t − a 2 u x x = 0 ( x > 0 ) u ∣ t = 0 = 0 u ∣ x = 0 = u 0 \begin{cases} u_{t}-a^2u_{xx}=0 &(x>0)\\ u|_{t=0}=0 \\ u|_{x=0}=u_0 \end{cases} uta2uxx=0ut=0=0ux=0=u0(x>0)
解:采用傅里叶正弦变换,定解问题变为
{ U ′ + k 2 a 2 U = k a 2 u 0 U ( 0 ) = 0 \begin{cases} U'+k^2a^2U=ka^2u_0 \\ U(0)=0 \end{cases} {U+k2a2U=ka2u0U(0)=0
其中 U ( k , t ) U(k,t) U(k,t) u ( x , t ) u(x,t) u(x,t) 关于 x x x 的傅里叶正弦变换。这个常微分方程初值问题的解为
U ( k , t ) = u 0 k ( 1 − e − k 2 a 2 t ) U(k,t)=\frac{u_0}{k}(1-e^{-k^2a^2t}) U(k,t)=ku0(1ek2a2t)

最后,对 U ( k , t ) U(k,t) U(k,t) 做傅里叶逆变换,结果是
u ( x , t ) = 2 u 0 π ∫ 0 + ∞ 1 k ( 1 − e − k 2 a 2 t ) sin ⁡ k x d k u(x,t)=\frac{2u_0}{\pi}\int_0^{+\infty}\frac{1}{k}(1-e^{-k^2a^2t})\sin kxdk u(x,t)=π2u00+k1(1ek2a2t)sinkxdk
通常记误差函数 (error function)
e r f ( x ) = 2 π ∫ 0 x e − s 2 d s \mathrm{erf}(x)=\frac{2}{\sqrt{\pi}}\int_0^xe^{-s^2}ds erf(x)=π 20xes2ds
余误差函数 (error function complement)
e r f c ( x ) = 1 − e r f ( x ) = 2 π ∫ x ∞ e − s 2 d s \mathrm{erfc}(x)=1-\mathrm{erf}(x)=\frac{2}{\sqrt{\pi}}\int_x^{\infty}e^{-s^2}ds erfc(x)=1erf(x)=π 2xes2ds
u ( x , t ) u(x,t) u(x,t) 可进一步变换为2
u ( x , t ) = 2 u 0 π [ π 2 − π 2 e r f ( x 2 a t ) ] = u 0 e r f c ( x 2 a t ) u(x,t)=\frac{2u_0}{\pi}[\frac{\pi}{2}-\frac{\pi}{2}\mathrm{erf}(\frac{x}{2a\sqrt{t}})] =u_0\mathrm{erfc}(\frac{x}{2a\sqrt{t}}) u(x,t)=π2u0[2π2πerf(2at x)]=u0erfc(2at x)

求三维无界空间中的波动问题
{ u t t − a 2 Δ u = 0 u ∣ t = 0 = ϕ ( x , y , z ) , ∂ u ∂ t ∣ t = 0 = ψ ( x , y , z ) \begin{cases} u_{tt}-a^2Δu=0 \\ u|_{t=0}=\phi(x,y,z),\cfrac{∂u}{∂t}|_{t=0}=\psi(x,y,z) \end{cases} utta2Δu=0ut=0=ϕ(x,y,z),tut=0=ψ(x,y,z)
解:作三重傅里叶变换,记 r = ( x , y , z ) , k = ( k 1 , k 2 , k 3 ) \mathbf r=(x,y,z),\mathbf k=(k_1,k_2,k_3) r=(x,y,z),k=(k1,k2,k3),定解问题变为
{ U ′ ′ + k 2 a 2 U = 0 U ( 0 ) = Φ ( k ) , U ′ ( 0 ) = Ψ ( k ) \begin{cases} U''+\mathbf k^2a^2U=0 \\ U(0)=\Phi(\mathbf k),\quad U'(0)=\Psi(\mathbf k) \end{cases} {U+k2a2U=0U(0)=Φ(k),U(0)=Ψ(k)
其中 U ( k , t ) , Φ ( k ) , Ψ ( k ) U(\mathbf k,t),\Phi(\mathbf k),\Psi(\mathbf k) U(k,t),Φ(k),Ψ(k) 分别是 u ( r , t ) , ϕ ( r ) , ψ ( r ) u(\mathbf r,t),\phi(\mathbf r),\psi(\mathbf r) u(r,t),ϕ(r),ψ(r) 关于 r \mathbf r r 的三维傅里叶变换。这个常微分方程初值问题的解为
U ( k , t ) = Φ ( k ) cos ⁡ k a t + Ψ ( k ) sin ⁡ k a t k a U(\mathbf k,t)=\Phi(\mathbf k)\cos kat+\Psi(\mathbf k)\frac{\sin kat}{ka} U(k,t)=Φ(k)coskat+Ψ(k)kasinkat

其中 k = ∣ k ∣ = k 1 2 + k 2 2 + k 3 2 k=|\mathbf k|=\sqrt{k_1^2+k_2^2+k_3^2} k=k=k12+k22+k32 ,再进行傅里叶逆变换
u ( r , t ) = 1 ( 2 π ) 3 ∭ − ∞ + ∞ [ Φ ( k ) cos ⁡ k a t + Ψ ( k ) sin ⁡ k a t k a ] e i k ⋅ r d k = 1 4 π a ∂ ∂ t ∬ S a t r ϕ ( r ) a t d S + 1 4 π a ∂ ∂ t ∬ S a t r ψ ( r ) a t d S \begin{aligned} u(\mathbf r,t)&=\frac{1}{(2\pi)^3}\iiint\limits_{-\infty}^{+\infty} [\Phi(\mathbf k)\cos kat+\Psi(\mathbf k)\frac{\sin kat}{ka}] e^{\mathrm i\mathbf{k\cdot r}}d\mathbf k \\ &=\frac{1}{4\pi a}\frac{∂}{∂t}\iint\limits_{S_{at}^{\mathbf r}}\frac{\phi(\mathbf r)}{at}dS +\frac{1}{4\pi a}\frac{∂}{∂t}\iint\limits_{S_{at}^{\mathbf r}}\frac{\psi(\mathbf r)}{at}dS \end{aligned} u(r,t)=(2π)31+[Φ(k)coskat+Ψ(k)kasinkat]eikrdk=4πa1tSatratϕ(r)dS+4πa1tSatratψ(r)dS
上式称为泊松公式。式中 S a t r S_{at}^{\mathbf r} Satr 表示以 r \mathbf r r 为圆心,以 a t at at 为半径的球面, d S dS dS 表示 S a t r S_{at}^{\mathbf r} Satr 的面积元。

拉普拉斯变换法

拉普拉斯变换法适合求解初值问题,不管方程和边界条件是否为齐次的。

Laplace变换:设函数 f ( t ) f(t) f(t) t ⩾ 0 t\geqslant 0 t0 时有定义,且积分 ∫ 0 + ∞ f ( t ) e − s t d t \displaystyle\int_{0}^{+∞}f(t)e^{-st}dt 0+f(t)estdt 收敛,则此积分所确定的函数
F ( s ) = ∫ 0 + ∞ f ( t ) e − s t d t (2.1) \displaystyle F(s)=\int^{+\infty}_{0}f(t)e^{-st}\text{d}t\tag{2.1} F(s)=0+f(t)estdt(2.1)
称为函数 f ( t ) f(t) f(t)Laplace 变换,记为 F ( s ) = L [ f ( t ) ] F(s)=\mathcal L[f(t)] F(s)=L[f(t)],函数 F ( s ) F(s) F(s) 也可称为 f ( t ) f(t) f(t)的象函数。
Laplace逆变换:令 s = β + i ω s=β+iω s=β+iω ,则有
f ( t ) = 1 2 π i ∫ β − i ω β + i ω F ( s ) e s t d s ( t > 0 ) \displaystyle f(t)=\dfrac{1}{2\pi i}\int_{β-iω}^{β+iω}F(s)e^{st}\text{d}s \quad(t>0) f(t)=2πi1βiωβ+iωF(s)estds(t>0)
称为 Laplace 逆变换,记为 f ( t ) = L − 1 [ F ( s ) ] f(t)=\mathcal L^{-1}[F(s)] f(t)=L1[F(s)] 。在Laplace 变换中,只要求 f ( t ) f(t) f(t) [ 0 , + ∞ ) [0,+∞) [0,+) 内有定义即可。为了研究方便,以后总假定在 ( − ∞ , 0 ) (−∞,0) (,0) 内, f ( t ) ≡ 0 f(t)≡0 f(t)0
还可用留数就算拉普拉斯逆变换:设在复平面内只有有限个孤立奇点 s 1 , s 2 , ⋯   , s n s_1,s_2,\cdots,s_n s1,s2,,sn ,实数 β β β使这些奇点全在半平面 Re ( s ) < β \text{Re}(s)<β Re(s)<β 内,且 lim ⁡ s → ∞ F ( s ) = 0 \lim\limits_{s\to∞}F(s)=0 slimF(s)=0 ,则有
f ( t ) = ∑ k = 1 n Res [ F ( s ) e s t , s k ] ( t > 0 ) \displaystyle f(t)=\sum_{k=1}^n\text{Res}[F(s)e^{st},s_k]\quad(t>0) f(t)=k=1nRes[F(s)est,sk](t>0)

求半无界杆的热传导问题
{ u t − a 2 u x x = 0 ( x > 0 ) u ∣ t = 0 = 0 ( x > 0 ) u ∣ x = 0 = u 0 \begin{cases} u_{t}-a^2u_{xx}=0 &(x>0)\\ u|_{t=0}=0 &(x>0)\\ u|_{x=0}=u_0 \end{cases} uta2uxx=0ut=0=0ux=0=u0(x>0)(x>0)
解:对方程和边界条件关于 t t t 进行拉普拉斯变换,采用微分性质,变换结果为
{ s U − a 2 U ′ ′ = 0 U ( 0 ) = 1 s u 0 \begin{cases} sU-a^2U''=0 \\ U(0)=\cfrac{1}{s}u_0 \end{cases} sUa2U=0U(0)=s1u0
其中 U ( s , x ) U(s,x) U(s,x) u ( x , t ) u(x,t) u(x,t) 关于 t t t 的傅里叶正弦变换。这个常微分方程通解为
U ( s , x ) = A exp ⁡ ( − s x a ) + B exp ⁡ ( s x a ) U(s,x)=A\exp(-\frac{\sqrt{sx}}{a})+B\exp(\frac{\sqrt{sx}}{a}) U(s,x)=Aexp(asx )+Bexp(asx )
考虑到自然边界条件 lim ⁡ x → ∞ U \lim\limits_{x\to\infty}U xlimU应为有限值,带入初值条件可求得
U ( s , x ) = 1 s u 0 exp ⁡ ( − s x a ) U(s,x)=\cfrac{1}{s}u_0\exp(-\frac{\sqrt{sx}}{a}) U(s,x)=s1u0exp(asx )
最后,对 U ( s , x ) U(s,x) U(s,x) 进行拉普拉斯逆变换[^L1]
u ( x , t ) = u 0 e r f c ( x 2 a t ) u(x,t)=u_0\mathrm{erfc}(\frac{x}{2a\sqrt{t}}) u(x,t)=u0erfc(2at x)

求长 l l l 均匀细杆的热传导问题
{ u t − a 2 u x x = 0 ( 0 < x < l ) u ∣ t = 0 = 0 ( 0 < x < l ) u ∣ x = 0 = u 0 , ∂ u ∂ x ∣ x = l = 0 \begin{cases} u_{t}-a^2u_{xx}=0 &(0<x<l)\\ u|_{t=0}=0 &(0<x<l) \\ u|_{x=0}=u_0, \quad \cfrac{∂u}{∂x}|_{x=l}=0 \end{cases} uta2uxx=0ut=0=0ux=0=u0,xux=l=0(0<x<l)(0<x<l)
解:对方程和边界条件关于 t t t 进行拉普拉斯变换,采用微分性质,变换结果为
{ s U − a 2 U ′ ′ = 0 U ( 0 ) = 1 s u 0 , U ′ ( l ) = 0 \begin{cases} sU-a^2U''=0 \\ U(0)=\cfrac{1}{s}u_0,\quad U'(l)=0 \end{cases} sUa2U=0U(0)=s1u0,U(l)=0
其中 U ( s , x ) U(s,x) U(s,x) u ( x , t ) u(x,t) u(x,t) 关于 t t t 的傅里叶正弦变换。这个二阶常微分方程的解为
U ( s , x ) = 1 s u 0 cosh ⁡ ( l − x ) s a cosh ⁡ l s a U(s,x)=\cfrac{1}{s}u_0\cfrac{\cosh\frac{(l-x)\sqrt{s}}{a}}{\cosh\frac{l\sqrt{s}}{a}} U(s,x)=s1u0coshals cosha(lx)s
最后,利用留数定理对 U ( s , x ) U(s,x) U(s,x) 进行拉普拉斯逆变换
u ( x , t ) = u 0 − π u 0 4 ∑ n = 0 ∞ 1 2 n + 1 sin ⁡ ( 2 n + 1 2 l π x ) exp ⁡ [ − ( 2 n + 1 2 l π ) 2 a 2 t ] u(x,t)=u_0-\cfrac{\pi u_0}{4}\sum_{n=0}^{\infty}\cfrac{1}{2n+1} \sin\left(\cfrac{2n+1}{2l}\pi x\right) \exp\left[-\left(\cfrac{2n+1}{2l}\pi\right)^2a^2t\right] u(x,t)=u04πu0n=02n+11sin(2l2n+1πx)exp(2l2n+1π)2a2t

基本解和格林函数

格林函数,又称点源影响函数,代表一个点源在一定的边界条件和(或)初始条件下所产生的场。均匀分布的函数可看做点源的叠加,该想法来源于静电场叠加原理。实际上,这种做法只不过是利用了偏微分方程的积分叠加原理。

泊松方程的基本解

引例:先举一个静电场的例子,设无界空间中电荷密度为 ρ ( r ) \rho(\mathbf r) ρ(r) ,这样在坐标 r 0 = ( x 0 , y 0 , z 0 ) \mathbf r_0=(x_0,y_0,z_0) r0=(x0,y0,z0) 的体积元 d V 0 dV_0 dV0 内的电荷量为 ρ ( r 0 ) d V 0 \rho(\mathbf r_0)dV_0 ρ(r0)dV0 ,它在空间点 r = ( x , y , z ) \mathbf r=(x,y,z) r=(x,y,z) 产生的电势为
1 4 π ε 0 ρ ( r 0 ) ∣ r − r 0 ∣ \cfrac{1}{4πε_0}\cfrac{\rho(\mathbf r_0)}{|\mathbf{r-r_0}|} 4πε01rr0ρ(r0)
根据电势叠加原理,可叠加求得任意密度分布引起的总电势分布
φ ( r ) = 1 4 π ε 0 ∭ ρ ( r 0 ) ∣ r − r 0 ∣ d V 0 φ(\mathbf r)=\cfrac{1}{4πε_0}\iiint\cfrac{\rho(\mathbf r_0)}{|\mathbf{r-r_0}|}dV_0 φ(r)=4πε01rr0ρ(r0)dV0
泊松方程的基本解:对于无界空间的泊松方程
Δ u = f ( r ) (1.1) Δu=f(\mathbf r)\tag{1.1} Δu=f(r)(1.1)
在物理上可看做电荷密度分布 − ε 0 f ( r ) -ε_0f(\mathbf r) ε0f(r) 在无界空间的电势方程。为了研究点源产生的场, δ δ δ 函数恰是一个表示点源密度的函数,由 δ δ δ 函数的性质知
∭ f ( r 0 ) δ ( r − r 0 ) d V 0 = f ( r ) \iiint f(\mathbf r_0)δ(\mathbf{r-r_0})\mathrm dV_0=f(\mathbf r) f(r0)δ(rr0)dV0=f(r)
这说明一般源 f ( r ) f(\mathbf r) f(r) 可看成 r 0 \mathbf r_0 r0 点的点源 f ( r 0 ) δ ( r − r 0 ) f(\mathbf r_0)δ(\mathbf{r-r_0}) f(r0)δ(rr0) 的积分叠加,由第一章积分叠加原理知道,只需求出方程
Δ G ( r , r 0 ) = δ ( r − r 0 ) (1.2) ΔG(\mathbf{r,r_0})=δ(\mathbf{r-r_0})\tag{1.2} ΔG(r,r0)=δ(rr0)(1.2)
的解 G ( r , r 0 ) G(\mathbf{r,r}_0) G(r,r0) ,便可得无界空间泊松方程的解
u ( r ) = ∭ G ( r , r 0 ) f ( r 0 ) d V 0 (1.3) u(\mathbf r)=\iiint G(\mathbf{r,r}_0)f(\mathbf r_0)\mathrm dV_0\tag{1.3} u(r)=G(r,r0)f(r0)dV0(1.3)
其中 G ( r , r 0 ) G(\mathbf{r,r}_0) G(r,r0) 称为格林函数,又称点源影响函数
由于是在无界空间,不妨先做平移变换,求方程(拉普拉斯算符平移不变性)
Δ U ( r ) = δ ( r ) (1.4) ΔU(\mathbf{r})=δ(\mathbf{r})\tag{1.4} ΔU(r)=δ(r)(1.4)
的解 U ( r ) U(\mathbf r) U(r),称为基本解,代表置于原点的点源引起的场。则
G ( r , r 0 ) = U ( r − r 0 ) (1.5) G(\mathbf{r,r_0})=U(\mathbf{r-r_0})\tag{1.5} G(r,r0)=U(rr0)(1.5)
进而有
u ( r ) = ∭ U ( r − r 0 ) f ( r 0 ) d V 0 = U ( r ) ∗ f ( r ) (1.6) u(\mathbf r) =\iiint U(\mathbf{r-r_0})f(\mathbf r_0)\mathrm dV_0 =U(\mathbf{r})*f(\mathbf r)\tag{1.6} u(r)=U(rr0)f(r0)dV0=U(r)f(r)(1.6)
基本解的求法:在物理上, 基本解 U ( r ) U(\mathbf r) U(r) 描述了位于原点电荷量为 − ε 0 -ε_0 ε0 的电荷在无界空间 r \mathbf r r 处的电势。这里基本解没有定解条件限制,因此不是惟一的,通常根据问题的物理意义和数学的需要选定其中一个。
下面介绍数学上的一种求解方法。将方程用球坐标表示,当 r ≠ 0 r\neq0 r=0 时,由于函数关于 r r r 对称,所以方程化为
1 r 2 d d r ( r 2 d U d r ) = 0 \cfrac{1}{r^2}\cfrac{d}{dr}(r^2\cfrac{dU}{dr})=0 r21drd(r2drdU)=0
其解为
U = − c 1 r + c 2 U=-\cfrac{c_1}{r}+c_2 U=rc1+c2
一般令无穷远处 U = 0 U=0 U=0,则 c 2 = 0 c_2=0 c2=0 。为了求出 c 1 c_1 c1 ,将方程包含原点的区域(不妨取以 ϵ \epsilon ϵ 为半径的球 V ϵ V_ϵ Vϵ)进行体积分,利用 δ δ δ 函数的性质
∭ V ϵ Δ U d V = 1 \iiint\limits_{V_ϵ}ΔUdV=1 VϵΔUdV=1
利用格林公式,将上述体积分化为面积分
∭ V ϵ Δ U d V = ∬ Σ ϵ ∂ U ∂ r d S = ∫ 0 2 π ∫ 0 π r 2 sin ⁡ θ d θ d ϕ = 4 π c 1 \iiint\limits_{V_ϵ}ΔUdV=\iint\limits_{Σ_ϵ}\cfrac{∂U}{∂r}dS =\int_0^{2\pi}\int_0^{\pi} r^2\sinθ dθ dϕ=4\pi c_1 VϵΔUdV=ΣϵrUdS=02π0πr2sinθdθdϕ=4πc1
于是 c 1 = 1 4 π c_1=\cfrac{1}{4\pi} c1=4π1 ,从而三维泊松方程基本解
U ( r ) = − 1 4 π r (1.7) U(\mathbf{r})=-\cfrac{1}{4πr}\tag{1.7} U(r)=4πr1(1.7)
类似的,用平面极坐标可求得二维泊松方程的基本解
U ( r ) = − 1 2 π ln ⁡ 1 r = 1 2 π ln ⁡ r (1.8) U(\mathbf{r})=-\cfrac{1}{2π}\ln\cfrac{1}{r}=\cfrac{1}{2π}\ln r \tag{1.8} U(r)=2π1lnr1=2π1lnr(1.8)

泊松方程的格林函数

泊松方程的边值问题:泊松方程第一、第二、第三类边值问题可统一表示为
{ Δ u = f ( r ) ( r ∈ V ) ( α ∂ u ∂ n + β u ) ∣ Σ = ϕ ( r ) ( r ∈ Σ ) (2.1) \begin{cases} Δu=f(\mathbf r) & (\mathbf r\in V) \\ (α\cfrac{∂u}{∂n}+βu)\Big|_{Σ}=\phi(\mathbf r) & (\mathbf r\in Σ) \end{cases}\tag{2.1} Δu=f(r)(αnu+βu)Σ=ϕ(r)(rV)(rΣ)(2.1)
α = 0 , β ≠ 0 α=0,β\neq0 α=0,β=0 为第一类边值问题;若 α ≠ 0 , β = 0 α\neq0,β=0 α=0,β=0 为第二类边值问题;若 α ≠ 0 , β ≠ 0 α\neq0,β\neq0 α=0,β=0 为第三类边值问题。由上节知道格林函数满足方程
Δ G ( r , r 0 ) = δ ( r − r 0 ) (2.2) ΔG(\mathbf{r,r_0})=δ(\mathbf{r-r_0})\tag{2.2} ΔG(r,r0)=δ(rr0)(2.2)
从物理上看,格林函数就是位于 r 0 \mathbf r_0 r0点电荷量为 − ε 0 -ε_0 ε0 的电荷在区域 V V V r \mathbf r r 点产生的电势。
现在,我们开始使用格林公式,叠加出泊松方程边值问题的解。为此,我们将 (2.1) 中泊松方程和方程 (2.2) 分别乘上 G ( r , r 0 ) G(\mathbf{r,r_0}) G(r,r0) u ( r ) u(\mathbf r) u(r) ,相减,然后在区域 V V V 内积分,得到
∭ V ( G Δ u − u Δ G ) d V = ∭ V G f d V − ∭ V u ( r ) δ ( r − r 0 ) d V \iiint\limits_{V}(GΔu-uΔG)dV =\iiint\limits_{V}GfdV-\iiint\limits_{V}u(\mathbf r)δ(\mathbf{r-r_0})dV V(GΔuuΔG)dV=VGfdVVu(r)δ(rr0)dV
根据格林公式,可以将上式左端化为面积分
∭ V ( G Δ u − u Δ G ) d V = ∬ Σ ( G ∂ u ∂ n − u ∂ G ∂ n ) d S \iiint\limits_{V}(GΔu-uΔG)dV=\iint\limits_{Σ}(G\cfrac{∂u}{∂n}-u\cfrac{∂G}{∂n})\mathrm{d}S V(GΔuuΔG)dV=Σ(GnuunG)dS
右端第二项根据 δ δ δ 函数的性质可以得到
∭ V u ( r ) δ ( r − r 0 ) d V = u ( r 0 ) \iiint\limits_{V}u(\mathbf r)δ(\mathbf{r-r_0})dV=u(\mathbf r_0) Vu(r)δ(rr0)dV=u(r0)
于是,可以得到
u ( r 0 ) = ∭ V G ( r , r 0 ) f ( r ) d V − ∬ Σ [ G ( r , r 0 ) ∂ u ( r ) ∂ n − u ( r ) ∂ G ( r , r 0 ) ∂ n ] d S (2.3) u(\mathbf r_0)=\iiint\limits_{V}G(\mathbf{r,r_0})f(\mathbf r)dV -\iint\limits_{Σ}[G(\mathbf{r,r_0})\cfrac{∂u(\mathbf r)}{∂n} -u(\mathbf r)\cfrac{∂G(\mathbf{r,r_0})}{∂n}]\mathrm{d}S \tag{2.3} u(r0)=VG(r,r0)f(r)dVΣ[G(r,r0)nu(r)u(r)nG(r,r0)]dS(2.3)
上式称为泊松方程的基本积分公式
需要注意的是, G ( r , r 0 ) G(\mathbf{r,r_0}) G(r,r0) r = r 0 \mathbf{r=r_0} r=r0 是不连续的,格林公式并不适用。严格的证明是,先在区域 V V V 内奇点 r 0 \mathbf r_0 r0 处挖去半径为 ε ε ε 的球形区域 V ε V_ε Vε ,应用格林公式,再令 ε → 0 ε\to 0 ε0 取极限求得。今后类似使用时将不再加以说明。

基本积分公式将泊松方程的解 u u u 用体积分和边界上的面积分表示了出来。对于面积分, u u u 的边界条件是已知的,如果我们对 G ( r , r 0 ) G(\mathbf{r,r_0}) G(r,r0) 提出适当的边界条件,从而获得格林函数确切的解,就可以将 u u u 确切的表示出来。

(1) 如果泊松方程满足第一类边界条件
u ∣ Σ = ϕ ( r ) ( r ∈ Σ ) u\Big|_{Σ}=\phi(\mathbf r)\quad(\mathbf r\in Σ) uΣ=ϕ(r)(rΣ)
同时要求 G ( r , r 0 ) G(\mathbf{r,r_0}) G(r,r0) 满足第一类齐次边界条件,即解决边值问题
{ Δ G ( r , r 0 ) = δ ( r − r 0 ) G ∣ Σ = 0 \begin{cases} ΔG(\mathbf{r,r_0})=δ(\mathbf{r-r_0}) \\ G\Big|_{Σ}=0 \end{cases} {ΔG(r,r0)=δ(rr0)GΣ=0
则积分公式 (2.3) 含 ∂ u ∂ n \cfrac{∂u}{∂n} nu 的一项为零,所以不需要知道 ∂ u ∂ n \cfrac{∂u}{∂n} nu 在边界上的值,上述边值问题的解称为泊松方程第一边值问题的格林函数。在物理上,可看做边界接地条件下,区域 V V V r 0 \mathbf r_0 r0 点(点源)电荷为 − ε 0 -ε_0 ε0 的点源在 V V V r \mathbf r r 点的电势。基本积分公式
u ( r 0 ) = ∭ V G ( r , r 0 ) f ( r ) d V + ∬ Σ ϕ ( r ) ∂ G ( r , r 0 ) ∂ n d S u(\mathbf r_0)=\iiint\limits_{V}G(\mathbf{r,r_0})f(\mathbf r)dV +\iint\limits_{Σ}\phi(\mathbf r)\cfrac{∂G(\mathbf{r,r_0})}{∂n}\mathrm{d}S u(r0)=VG(r,r0)f(r)dV+Σϕ(r)nG(r,r0)dS
(2) 如果泊松方程满足第三类边界条件
( α ∂ u ∂ n + β u ) ∣ Σ = ϕ ( r ) ( r ∈ Σ ) (α\cfrac{∂u}{∂n}+βu)\Big|_{Σ}=\phi(\mathbf r)\quad(\mathbf r\in Σ) (αnu+βu)Σ=ϕ(r)(rΣ)
G ( r , r 0 ) G(\mathbf{r,r_0}) G(r,r0) 满足第三类齐次边界条件,即解决边界问题
{ Δ G ( r , r 0 ) = δ ( r − r 0 ) ( α ∂ G ∂ n + β G ) ∣ Σ = 0 \begin{cases} ΔG(\mathbf{r,r_0})=δ(\mathbf{r-r_0}) \\ (α\cfrac{∂G}{∂n}+βG)\Big|_{Σ}=0 \end{cases} ΔG(r,r0)=δ(rr0)(αnG+βG)Σ=0
分别用 G , u G,u G,u ∂ G ∂ n , ∂ u ∂ n \cfrac{∂G}{∂n},\cfrac{∂u}{∂n} nG,nu 交叉相乘上述两方程,并相减,可以得到
( G ∂ u ∂ n − u ∂ G ∂ n ) ∣ Σ = 1 α G ϕ = − 1 β ∂ G ∂ n ϕ (G\cfrac{∂u}{∂n}-u\cfrac{∂G}{∂n})\Big|_{Σ} =\cfrac{1}{α}G\phi=-\cfrac{1}{β}\cfrac{∂G}{∂n}\phi (GnuunG)Σ=α1Gϕ=β1nGϕ
上述边值问题的解称为泊松方程第三边值问题的格林函数,此时
u ( r 0 ) = ∭ V G ( r , r 0 ) f ( r ) d V − 1 α ∬ Σ ϕ ( r ) G ( r , r 0 ) d S = ∭ V G ( r , r 0 ) f ( r ) d V + 1 β ∬ Σ ϕ ( r ) ∂ G ( r , r 0 ) ∂ n d S \begin{aligned} u(\mathbf r_0) &=\iiint\limits_{V}G(\mathbf{r,r_0})f(\mathbf r)dV -\cfrac{1}{α}\iint\limits_{Σ}\phi(\mathbf r)G(\mathbf{r,r_0})\mathrm{d}S \\ &=\iiint\limits_{V}G(\mathbf{r,r_0})f(\mathbf r)dV +\cfrac{1}{β}\iint\limits_{Σ}\phi(\mathbf r)\cfrac{∂G(\mathbf{r,r_0})}{∂n}\mathrm{d}S \end{aligned} u(r0)=VG(r,r0)f(r)dVα1Σϕ(r)G(r,r0)dS=VG(r,r0)f(r)dV+β1Σϕ(r)nG(r,r0)dS
(3) 至于第二类边界条件
∂ u ∂ n ∣ Σ = ϕ ( r ) ( r ∈ Σ ) \cfrac{∂u}{∂n}\Big|_{Σ}=\phi(\mathbf r)\quad(\mathbf r\in Σ) nuΣ=ϕ(r)(rΣ)
似乎可以按照上面的方法,即解决边值问题
{ Δ G ( r , r 0 ) = δ ( r − r 0 ) ∂ G ∂ n ∣ Σ = 0 \begin{cases} ΔG(\mathbf{r,r_0})=δ(\mathbf{r-r_0}) \\ \cfrac{∂G}{∂n}\Big|_{Σ}=0 \end{cases} ΔG(r,r0)=δ(rr0)nGΣ=0
在格林公式中,令 u ( r ) = 1 , v ( r ) = G ( r , r 0 ) u(\mathbf r)=1,v(\mathbf r)=G(\mathbf{r,r_0}) u(r)=1,v(r)=G(r,r0) ,则有
∭ V Δ G ( r , r 0 ) d V = ∬ Σ ∇ G ( r , r 0 ) ⋅ d S = ∬ Σ ∂ G ( r , r 0 ) ∂ n d S \iiint\limits_{V}ΔG(\mathbf{r,r_0})\mathrm{d}V =\iint\limits_{Σ}∇G(\mathbf{r,r_0})\cdot\mathrm{d}\mathbf S =\iint\limits_{Σ}\cfrac{∂G(\mathbf{r,r_0})}{∂n}\mathrm{d}S VΔG(r,r0)dV=ΣG(r,r0)dS=ΣnG(r,r0)dS
对边值问题中方程进行积分,根据 δ δ δ 函数的性质又得到
∭ V Δ G ( r , r 0 ) d V = 1 \iiint\limits_{V}ΔG(\mathbf{r,r_0})\mathrm{d}V=1 VΔG(r,r0)dV=1
于是格林函数在边界上的积分必须满足
∬ Σ ∂ G ( r , r 0 ) ∂ n d S = 1 ≠ 0 \iint\limits_{Σ}\cfrac{∂G(\mathbf{r,r_0})}{∂n}\mathrm{d}S=1\neq0 ΣnG(r,r0)dS=1=0
这显然和上述边值问题中边界条件是矛盾的,第二类齐次边界问题一定无解。此时,需要引进广义的格林函数
{ Δ G ( r , r 0 ) = δ ( r − r 0 ) − 1 v ∂ G ∂ n ∣ Σ = 0 \begin{cases} ΔG(\mathbf{r,r_0})=δ(\mathbf{r-r_0})-\cfrac{1}{v} \\ \cfrac{∂G}{∂n}\Big|_{Σ}=0 \end{cases} ΔG(r,r0)=δ(rr0)v1nGΣ=0
其中 v v v 是区域 V V V 的体积,并且当且仅当
∭ V f ( r ) d V = − ∬ Σ ϕ ( r ) d S \iiint\limits_{V}f(\mathbf r)dV= -\iint\limits_{Σ}\phi(\mathbf r)\mathrm{d}S Vf(r)dV=Σϕ(r)dS
相应边值问题解的积分公式为
u ( r 0 ) = ∭ V G ( r , r 0 ) f ( r ) d V − ∬ Σ ϕ ( r ) G ( r , r 0 ) d S u(\mathbf r_0)=\iiint\limits_{V}G(\mathbf{r,r_0})f(\mathbf r)dV -\iint\limits_{Σ}\phi(\mathbf r)G(\mathbf{r,r_0})\mathrm{d}S u(r0)=VG(r,r0)f(r)dVΣϕ(r)G(r,r0)dS
格林函数的对称性:上述积分公式,似乎没有明确的物理意义。接下来我们先讨论格林函数的一个重要性质
G ( r 1 , r 2 ) = G ( r 2 , r 1 ) (2.4) G(\mathbf{r_1,r_2})=G(\mathbf{r_2,r_1})\tag{2.4} G(r1,r2)=G(r2,r1)(2.4)
引入两个格林函数 G ( r , r 1 ) , G ( r , r 2 ) G(\mathbf{r,r_1}),G(\mathbf{r,r_2}) G(r,r1),G(r,r2),以第一类边界问题为例
{ Δ G ( r , r 1 ) = δ ( r − r 1 ) G ( r , r 1 ) ∣ Σ = 0 , { Δ G ( r , r 2 ) = δ ( r − r 2 ) G ( r , r 2 ) ∣ Σ = 0 ( r , r 1 , r 2 ∈ V ) \begin{cases} ΔG(\mathbf{r,r_1})=δ(\mathbf{r-r_1}) \\ G(\mathbf{r,r_1})\Big|_{Σ}=0 \end{cases},\quad \begin{cases} ΔG(\mathbf{r,r_2})=δ(\mathbf{r-r_2}) \\ G(\mathbf{r,r_2})\Big|_{Σ}=0 \end{cases}\quad(\mathbf{r,r_1,r_2}\in V) {ΔG(r,r1)=δ(rr1)G(r,r1)Σ=0,{ΔG(r,r2)=δ(rr2)G(r,r2)Σ=0(r,r1,r2V)
利用 δ δ δ 函数的性质和格林公式,上述方程可以得到
G ( r 1 , r 2 ) − G ( r 2 , r 1 ) = ∭ V [ G ( r , r 2 ) δ ( r − r 1 ) − G ( r , r 1 ) δ ( r − r 2 ) ] d V = ∭ V [ G ( r , r 2 ) Δ G ( r , r 1 ) − G ( r , r 1 ) Δ G ( r , r 2 ) ] d V = ∬ Σ [ G ( r , r 2 ) ∇ G ( r , r 1 ) − G ( r , r 1 ) ∇ G ( r , r 2 ) ] ⋅ d S \begin{aligned} & G(\mathbf{r_1,r_2})-G(\mathbf{r_2,r_1}) \\ = & \iiint\limits_{V}[G(\mathbf{r,r_2})δ(\mathbf{r-r_1}) -G(\mathbf{r,r_1})δ(\mathbf{r-r_2})]\mathrm{d}V \\ = & \iiint\limits_{V}[G(\mathbf{r,r_2})ΔG(\mathbf{r,r_1}) -G(\mathbf{r,r_1})ΔG(\mathbf{r,r_2})]\mathrm{d}V \\ =& \iint\limits_{Σ}[G(\mathbf{r,r_2})∇G(\mathbf{r,r_1}) -G(\mathbf{r,r_1})∇G(\mathbf{r,r_2})]\cdot\mathrm{d}\mathbf S \end{aligned} ===G(r1,r2)G(r2,r1)V[G(r,r2)δ(rr1)G(r,r1)δ(rr2)]dVV[G(r,r2)ΔG(r,r1)G(r,r1)ΔG(r,r2)]dVΣ[G(r,r2)G(r,r1)G(r,r1)G(r,r2)]dS
带入边界条件,可得出面积分等于零,于是
G ( r 1 , r 2 ) = G ( r 2 , r 1 ) G(\mathbf{r_1,r_2})=G(\mathbf{r_2,r_1}) G(r1,r2)=G(r2,r1)
对于第二类、第三类边界条件也可以得到同样的结果。

综上所述:对于泊松方程积分公式中的 r \mathbf r r r 0 \mathbf r_0 r0 互换下位置,并利用格林函数的对称性可得
第一边值问题解的积分表达式为
u ( r ) = ∭ V G ( r , r 0 ) f ( r 0 ) d V 0 + ∬ Σ ϕ ( r 0 ) ∂ G ( r , r 0 ) ∂ n d S 0 u(\mathbf r)=\iiint\limits_{V}G(\mathbf{r,r_0})f(\mathbf r_0)\mathrm dV_0 +\iint\limits_{Σ}\phi(\mathbf r_0)\cfrac{∂G(\mathbf{r,r_0})}{∂n}\mathrm{d}S_0 u(r)=VG(r,r0)f(r0)dV0+Σϕ(r0)nG(r,r0)dS0
第二边值问题解的积分表达式为
u ( r ) = ∭ V G ( r , r 0 ) f ( r 0 ) d V 0 − ∬ Σ ϕ ( r 0 ) G ( r , r 0 ) d S 0 u(\mathbf r)=\iiint\limits_{V}G(\mathbf{r,r_0})f(\mathbf r_0)\mathrm dV_0 -\iint\limits_{Σ}\phi(\mathbf r_0)G(\mathbf{r,r_0})\mathrm{d}S_0 u(r)=VG(r,r0)f(r0)dV0Σϕ(r0)G(r,r0)dS0
第三边值问题解的积分表达式为
u ( r ) = ∭ V G ( r , r 0 ) f ( r 0 ) d V 0 − 1 α ∬ Σ ϕ ( r 0 ) G ( r , r 0 ) d S 0 = ∭ V G ( r , r 0 ) f ( r 0 ) d V 0 + 1 β ∬ Σ ϕ ( r 0 ) ∂ G ( r , r 0 ) ∂ n d S 0 \begin{aligned} u(\mathbf r)&=\iiint\limits_{V}G(\mathbf{r,r_0})f(\mathbf r_0)\mathrm dV_0 -\cfrac{1}{α}\iint\limits_{Σ}\phi(\mathbf r_0)G(\mathbf{r,r_0})\mathrm{d}S_0 \\ &=\iiint\limits_{V}G(\mathbf{r,r_0})f(\mathbf r_0)dV_0 +\cfrac{1}{β}\iint\limits_{Σ}\phi(\mathbf r_0)\cfrac{∂G(\mathbf{r,r_0})}{∂n}\mathrm{d}S_0 \end{aligned} u(r)=VG(r,r0)f(r0)dV0α1Σϕ(r0)G(r,r0)dS0=VG(r,r0)f(r0)dV0+β1Σϕ(r0)nG(r,r0)dS0
此时,积分公式有明确的物理意义,右边第一个积分表示在区域 V V V 内分布的点源在 r \mathbf r r 处产生的场的总和,而第二项则代表边界面上感生场对 r \mathbf r r 处场的影响的总和。

用镜像法求格林函数

泊松方程第一、第三类边值问题对应的格林函数满足
{ Δ G = δ ( r − r 0 ) ( r ∈ V ) ( α ∂ G ∂ n + β G ) ∣ Σ = 0 ( r ∈ Σ ) (3.1) \begin{cases} ΔG=δ(\mathbf{r-r_0}) & (\mathbf r\in V) \\ (α\cfrac{∂G}{∂n}+βG)\Big|_{Σ}=0 & (\mathbf r\in Σ) \end{cases}\tag{3.1} ΔG=δ(rr0)(αnG+βG)Σ=0(rV)(rΣ)(3.1)
下面介绍格林函数的两种解法

  • 第一种是按相应齐次问题及边界条件的本征函数展开,用分离变量法求得,但这样得到的解往往是无穷级数。
  • 格林函数的物理意义启发我们,对于某些特殊区域,格林函数可以通过镜像法求得,可以取得有限形式的解。

镜像法:例如泊松方程第一边值问题的格林函数
{ Δ G = δ ( r − r 0 ) ( r ∈ V ) G ∣ Σ = 0 ( r ∈ Σ ) \begin{cases} ΔG=δ(\mathbf{r-r_0}) &(\mathbf r\in V)\\ G|_Σ=0 &(\mathbf r\in Σ) \end{cases} {ΔG=δ(rr0)GΣ=0(rV)(rΣ)
在物理上可理解为,一接地导体 V V V r 0 \mathbf r_0 r0 点电荷量为 − ε 0 -ε_0 ε0 的点电荷在 V V V r \mathbf r r 点的电势。
由叠加原理,通常将格林函数 G G G 分成两部分
G ( r , r 0 ) = G 0 ( r , r 0 ) + G 1 ( r , r 0 ) G(\mathbf{r,r_0})=G_0(\mathbf{r,r_0})+G_1(\mathbf{r,r_0}) G(r,r0)=G0(r,r0)+G1(r,r0)
其中 U U U 满足
Δ G 0 = δ ( r − r 0 ) ΔG_0=δ(\mathbf{r-r_0}) ΔG0=δ(rr0)
r 0 \mathbf r_0 r0 点的点电荷产生的场, G 1 G_1 G1 满足
{ Δ G 1 = 0 G 1 ∣ Σ = − G 0 ∣ Σ \begin{cases} ΔG_1=0 \\ G_1|_Σ=-G_0|_Σ \end{cases} {ΔG1=0G1Σ=G0Σ
是导体内 r 0 \mathbf r_0 r0 点的点电荷在边界上的感应电荷产生的场。
利用第一节中的基本解可知,在三维情形下
G 0 ( r , r 0 ) = − 1 4 π 1 ∣ r − r 0 ∣ (3.2) G_0(\mathbf{r,r_0})=-\cfrac{1}{4π}\cfrac{1}{|\mathbf{r-r_0}|}\tag{3.2} G0(r,r0)=4π1rr01(3.2)
类似的,二维情形下
G 0 ( r , r 0 ) = − 1 2 π ln ⁡ 1 ∣ r − r 0 ∣ = 1 2 π ln ⁡ ∣ r − r 0 ∣ (3.3) G_0(\mathbf{r,r_0})=-\cfrac{1}{2π}\ln\cfrac{1}{|\mathbf{r-r_0}|}= \cfrac{1}{2π}\ln |\mathbf{r-r_0}|\tag{3.3} G0(r,r0)=2π1lnrr01=2π1lnrr0(3.3)
由于区域 V V V 外的电源在 V V V 内产生的场满足拉普拉斯方程,镜像法的中心思想是把边界上的感生电荷用一个等价的点电荷(像电荷)代替,困难在于 V V V 内点电荷的电场在边界上必须和像电荷的电场相抵消,只有在某些特殊区域(例如,球形,半无界空间,等等)才能实现。

求球内泊松方程第一边值问题格林函数
{ Δ G = δ ( r − r 0 ) ( 0 < r , r 0 < a ) G ∣ r = a = 0 \begin{cases} ΔG=δ(\mathbf{r-r_0}) &(0<r,r_0<a)\\ G|_{r=a}=0 \end{cases} {ΔG=δ(rr0)Gr=a=0(0<r,r0<a)
(1) 像电荷如果存在的话,一定在球外。这是由于感应电荷的电势在球内是处处连续的,在球内的任何电荷都不能产生同样的效果。
(2) 考虑到对称性,这个像电荷一定存在于真实电荷所在半径的延长线上。
记球内电荷位于点 Q 0 ( r 0 ) Q_0(\mathbf r_0) Q0(r0) ,像电荷位于点 Q 1 ( r 1 ) Q_1(\mathbf r_1) Q1(r1) 电量为 q q q ,如图


在球内任取一点 P ( r ) P(\mathbf r) P(r) ,由叠加原理知道,总电势是球内电荷产生的电势和像电荷产生的电势叠加
G = − 1 4 π 1 ∣ r − r 0 ∣ + q 4 π ε 0 1 ∣ r − r 1 ∣ G=-\cfrac{1}{4π}\cfrac{1}{\mathbf{|r-r_0|}} +\cfrac{q}{4πε_0}\cfrac{1}{\mathbf{|r-r_1|}} G=4π1rr01+4πε0qrr11
引入球坐标系(原点在球心),由于 r 0 , r 1 \mathbf{r_0,r_1} r0,r1 共线,设 r 1 = λ r 0 \mathbf r_1=λ\mathbf r_0 r1=λr0
∣ r − r 0 ∣ = P Q 0 = r 2 − 2 r r 0 cos ⁡ γ + r 0 2 ∣ r − r 1 ∣ = P Q 1 = r 2 − 2 λ r r 0 cos ⁡ γ + λ 2 r 0 2 \mathbf{|r-r_0|}=PQ_0=\sqrt{r^2-2rr_0\cosγ+r_0^2} \\ \mathbf{|r-r_1|}=PQ_1=\sqrt{r^2-2λrr_0\cosγ+λ^2r_0^2} rr0=PQ0=r22rr0cosγ+r02 rr1=PQ1=r22λrr0cosγ+λ2r02
其中 γ γ γ 是矢径 r \mathbf r r r 0 \mathbf r_0 r0 ( r 1 ) (\mathbf r_1) (r1) 之间的夹角
cos ⁡ γ = cos ⁡ θ cos ⁡ θ 0 + sin ⁡ θ sin ⁡ θ 0 cos ⁡ ( ϕ − ϕ 0 ) \cosγ=\cosθ\cosθ_0+\sinθ\sinθ_0\cos(ϕ-ϕ_0) cosγ=cosθcosθ0+sinθsinθ0cos(ϕϕ0)
当观察点 P P P 位于球面上时,考虑边界条件
G ∣ r = a = 0 G|_{r=a}=0 Gr=a=0
可得到球面上
− 1 4 π 1 a 2 − 2 a r 0 cos ⁡ γ + r 0 2 + q 4 π ε 0 1 a 2 − 2 λ a r 0 cos ⁡ γ + λ 2 r 0 2 = 0 -\cfrac{1}{4π}\cfrac{1}{\sqrt{a^2-2ar_0\cosγ+r_0^2}} +\cfrac{q}{4πε_0}\cfrac{1}{\sqrt{a^2-2λar_0\cosγ+λ^2r_0^2}}=0 4π1a22ar0cosγ+r02 1+4πε0qa22λar0cosγ+λ2r02 1=0
整理移项得
q ε 0 a 2 − 2 a r 0 cos ⁡ γ + r 0 2 − a 2 − 2 λ a r 0 cos ⁡ γ + λ 2 r 0 2 = 0 \cfrac{q}{ε_0}\sqrt{a^2-2ar_0\cosγ+r_0^2}-\sqrt{a^2-2λar_0\cosγ+λ^2r_0^2}=0 ε0qa22ar0cosγ+r02 a22λar0cosγ+λ2r02 =0
为使上式在球面上恒成立(与球坐标 θ , ϕ θ,ϕ θ,ϕ 无关),可以得到
{ q ε 0 > 0 λ = ( q ε 0 ) 2 a 2 + λ 2 r 0 2 = ( q ε 0 ) 2 ( a 2 + r 0 2 ) \begin{cases} \cfrac{q}{ε_0}>0 \\ λ=(\cfrac{q}{ε_0})^2 \\ a^2+λ^2r_0^2=(\cfrac{q}{ε_0})^2(a^2+r_0^2) \end{cases} ε0q>0λ=(ε0q)2a2+λ2r02=(ε0q)2(a2+r02)
于是我们可得到
{ q = ε 0 a r 0 λ = ( a r 0 ) 2 \begin{cases} q=\cfrac{ε_0a}{r_0} \\ λ=(\cfrac{a}{r_0})^2 \end{cases} q=r0ε0aλ=(r0a)2
这个设想的等效电荷 q q q 称为球内点电荷的点像。这样,球内任意一点总电势为
G ( r , r 0 ) = − 1 4 π ( 1 ∣ r − r 0 ∣ − a r 0 1 ∣ r − r 1 ∣ ) G(\mathbf{r,r_0})=-\cfrac{1}{4π}\Big(\cfrac{1}{\mathbf{|r-r_0|}} -\cfrac{a}{r_0}\cfrac{1}{|\mathbf{r}-\mathbf{r_1}|}\Big) G(r,r0)=4π1(rr01r0arr11)
其中 a a a 为球半径,点像位置 r 1 = ( a r 0 ) 2 r 0 \mathbf r_1=(\cfrac{a}{r_0})^2\mathbf{r_0} r1=(r0a)2r0
球坐标表示式为
G ( r , θ , ϕ ) = − 1 4 π ( 1 r 2 − 2 r r 0 cos ⁡ γ + r 0 2 − a r 0 2 r 2 − 2 a 2 r r 0 cos ⁡ γ + a 4 ) G(r,θ,ϕ)=-\cfrac{1}{4π}\Big(\cfrac{1}{\sqrt{r^2-2rr_0\cosγ+r_0^2}} -\cfrac{a}{\sqrt{r_0^2r^2-2a^2rr_0\cosγ+a^4}}\Big) G(r,θ,ϕ)=4π1(r22rr0cosγ+r02 1r02r22a2rr0cosγ+a4 a)
类似的,圆内泊松方程第一边值问题的格林函数
{ Δ 2 G = δ ( r − r 0 ) G ∣ r = a = 0 \begin{cases} Δ_2G=δ(\mathbf{r-r_0}) \\ G|_{r=a}=0 \end{cases} {Δ2G=δ(rr0)Gr=a=0
用电像法求得其解为
G ( r , r 0 ) = − 1 2 π ( ln ⁡ 1 ∣ r − r 0 ∣ − ln ⁡ 1 ∣ r − r 1 ∣ − ln ⁡ a r 0 ) G(\mathbf{r,r_0}) =-\cfrac{1}{2π}\Big(\ln\cfrac{1}{\mathbf{|r-r_0|}} -\ln\cfrac{1}{\mathbf{|r-r_1|}}-\ln\cfrac{a}{r_0}\Big) G(r,r0)=2π1(lnrr01lnrr11lnr0a)
其中 a a a 为圆半径,电像位置 r 1 = ( a r 0 ) 2 r 0 \mathbf r_1=(\cfrac{a}{r_0})^2\mathbf{r_0} r1=(r0a)2r0
极坐标表示式为
G ( r , θ ) = − 1 4 π [ − ln ⁡ ( r 2 − 2 r r 0 cos ⁡ ( θ − θ 0 ) + r 0 2 ) + ln ⁡ ( r 2 − 2 r a 2 r 0 cos ⁡ ( θ − θ 0 ) + a 4 r 0 2 ) + 2 ln ⁡ a r 0 ] G(r,θ)=-\cfrac{1}{4π}\Big[-\ln(r^2-2rr_0\cos(θ-θ_0)+r_0^2) +\ln(r^2-2r\cfrac{a^2}{r_0}\cos(θ-θ_0)+\cfrac{a^4}{r_0^2}) +2\ln\cfrac{a}{r_0}\Big] G(r,θ)=4π1[ln(r22rr0cos(θθ0)+r02)+ln(r22rr0a2cos(θθ0)+r02a4)+2lnr0a]
示例 1:在球内求解拉普拉斯方程的第一边值问题
{ Δ u = 0 ( r < a ) u ∣ r = a = f \begin{cases} Δu=0 & (r<a)\\ u|_{r=a}=f \end{cases} {Δu=0ur=a=f(r<a)
解:其用格林函数表示的解为
u ( r ) = ∬ Σ f ( r 0 ) ∂ G ( r , r 0 ) ∂ n d S 0 u(\mathbf r)=\iint\limits_{Σ}f(\mathbf r_0)\cfrac{∂G(\mathbf{r,r_0})}{∂n}\mathrm{d}S_0 u(r)=Σf(r0)nG(r,r0)dS0
其中球内泊松方程第一边值问题的格林函数前面已用电像法求得,球坐标表示式如下
G ( r , θ , ϕ ) = − 1 4 π ( 1 r 2 − 2 r r 0 cos ⁡ γ + r 0 2 − a r 0 2 r 2 − 2 a 2 r r 0 cos ⁡ γ + a 4 ) G(r,θ,ϕ)=-\cfrac{1}{4π}\Big(\cfrac{1}{\sqrt{r^2-2rr_0\cosγ+r_0^2}} -\cfrac{a}{\sqrt{r_0^2r^2-2a^2rr_0\cosγ+a^4}}\Big) G(r,θ,ϕ)=4π1(r22rr0cosγ+r02 1r02r22a2rr0cosγ+a4 a)
注意到,在球面上外法线方向与 r 0 r_0 r0 所在半径的方向一致,因此
∂ G ∂ n 0 ∣ r 0 = a = ∂ G ∂ r 0 ∣ r 0 = a = 1 4 π a a 2 − r 2 ( a 2 − 2 a r cos ⁡ γ + r 2 ) 3 / 2 \cfrac{∂G}{∂n_0}|_{r_0=a}=\cfrac{∂G}{∂r_0}|_{r_0=a} =\cfrac{1}{4\pi a}\cfrac{a^2-r^2}{(a^2-2ar\cosγ+r^2)^{3/2}} n0Gr0=a=r0Gr0=a=4πa1(a22arcosγ+r2)3/2a2r2
带入第一边值问题解的积分公式
u ( r , θ , ϕ ) = a 2 − r 2 4 π a ∫ 0 2 π d ϕ 0 ∫ 0 π f ( θ 0 , ϕ 0 ) ( a 2 − 2 a r cos ⁡ γ + r 2 ) 3 / 2 sin ⁡ θ 0 d θ 0 u(r,θ,ϕ)=\cfrac{a^2-r^2}{4\pi a}\int_{0}^{2\pi}\mathrm{d}ϕ_0\int_{0}^{\pi} \cfrac{f(θ_0,ϕ_0)}{(a^2-2ar\cosγ+r^2)^{3/2}} \sinθ_0\mathrm{d}θ_0 u(r,θ,ϕ)=4πaa2r202πdϕ00π(a22arcosγ+r2)3/2f(θ0,ϕ0)sinθ0dθ0
上式称为球域上的泊松公式

示例 2:在圆内解拉普拉斯方程的第一边值问题
{ u x x + u y y = 0 ( r < a ) u ∣ r = a = f \begin{cases}u_{xx}+u_{yy}=0 & (r<a)\\u|_{r=a}=f\end{cases} {uxx+uyy=0ur=a=f(r<a)
解:和上例用类似的方法可求得
u ( r , θ ) = a 2 − r 2 2 π ∫ 0 2 π f ( θ 0 ) a 2 − 2 a r cos ⁡ ( θ − θ 0 ) + r 2 d θ 0 u(r,θ)=\cfrac{a^2-r^2}{2\pi}\int_{0}^{2\pi} \cfrac{f(θ_0)}{a^2-2ar\cos(θ-θ_0)+r^2}\mathrm{d}θ_0 u(r,θ)=2πa2r202πa22arcos(θθ0)+r2f(θ0)dθ0
示例 3:在上半空间 z > 0 z>0 z>0 内求解拉普拉斯方程的第一边值问题
{ Δ u = 0 ( z > 0 ) u ∣ z = 0 = f \begin{cases}Δu=0 & (z>0)\\u|_{z=0}=f\end{cases} {Δu=0uz=0=f(z>0)
解:其用格林函数表示的解为
u ( r ) = ∬ Σ f ( r 0 ) ∂ G ( r , r 0 ) ∂ n d S 0 u(\mathbf r)=\iint\limits_{Σ}f(\mathbf r_0)\cfrac{∂G(\mathbf{r,r_0})}{∂n}\mathrm{d}S_0 u(r)=Σf(r0)nG(r,r0)dS0
格林函数 G ( r , r 0 ) G(\mathbf{r,r_0}) G(r,r0) 满足的方程为
{ Δ G = δ ( x − x 0 ) δ ( y − y 0 ) δ ( z − z 0 ) G ∣ z = 0 = 0 \begin{cases} ΔG=δ(x-x_0)δ(y-y_0)δ(z-z_0) \\ G|_{z=0}=0\end{cases} {ΔG=δ(xx0)δ(yy0)δ(zz0)Gz=0=0
这相当于接地导体平面 z = 0 z=0 z=0 上方的电势,如图,在点 Q 0 ( x 0 , y 0 , z 0 ) Q_0(x_0,y_0,z_0) Q0(x0,y0,z0) 处放置电荷量为 − ε 0 -ε_0 ε0 的点电荷。电势可用电像法求得,设想在 Q 1 ( x 0 , y 0 , − z 0 ) Q_1(x_0,y_0,-z_0) Q1(x0,y0,z0) 放置电量为 + ε 0 +ε_0 +ε0 的点电荷,不难验证,在 z = 0 z=0 z=0 上电势处处为零, Q 1 Q_1 Q1 即为 Q 0 Q_0 Q0 的电像。


格林函数
G ( r , r 0 ) = − 1 4 π 1 ∣ r − r 0 ∣ + 1 4 π 1 ∣ r − r 1 ∣ = − 1 4 π 1 ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 + 1 4 π 1 ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z + z 0 ) 2 \begin{aligned} G(\mathbf{r,r_0})&=-\cfrac{1}{4π}\cfrac{1}{\mathbf{|r-r_0|}} +\cfrac{1}{4π}\cfrac{1}{|\mathbf{r}-\mathbf{r_1}|} \\ &=-\cfrac{1}{4π}\cfrac{1}{\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}} \\ &+\cfrac{1}{4π}\cfrac{1}{\sqrt{(x-x_0)^2+(y-y_0)^2+(z+z_0)^2}} \end{aligned} G(r,r0)=4π1rr01+4π1rr11=4π1(xx0)2+(yy0)2+(zz0)2 1+4π1(xx0)2+(yy0)2+(z+z0)2 1
外法向方向与 z 0 z_0 z0 正方向一致,因此
∂ G ∂ n 0 ∣ z 0 = 0 = − ∂ G ∂ z 0 ∣ z 0 = 0 = 1 2 π z [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 2 ] 3 / 2 \cfrac{∂G}{∂n_0}|_{z_0=0}=-\cfrac{∂G}{∂z_0}|_{z_0=0}= \cfrac{1}{2π}\cfrac{z}{[(x-x_0)^2+(y-y_0)^2+z^2]^{3/2}} n0Gz0=0=z0Gz0=0=2π1[(xx0)2+(yy0)2+z2]3/2z
于是可得上半空间的泊松积分
u ( x , y , z ) = z 2 π ∬ − ∞ + ∞ f ( x 0 , y 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 2 ] 3 / 2 d x 0 d y 0 u(x,y,z)=\cfrac{z}{2π}\iint\limits_{-\infty}^{+\infty} \cfrac{f(x_0,y_0)}{[(x-x_0)^2+(y-y_0)^2+z^2]^{3/2}}\mathrm dx_0\mathrm dy_0 u(x,y,z)=2πz+[(xx0)2+(yy0)2+z2]3/2f(x0,y0)dx0dy0
示例 4:在圆内解拉普拉斯方程的第一边值问题
{ u x x + u y y = 0 ( y > 0 ) u ∣ y = 0 = f \begin{cases}u_{xx}+u_{yy}=0 & (y>0)\\u|_{y=0}=f\end{cases} {uxx+uyy=0uy=0=f(y>0)
解:和上例用类似的方法可求得
u ( x , y , z ) = y π ∫ − ∞ + ∞ f ( x 0 ) ( x − x 0 ) 2 + y 2 d x 0 u(x,y,z)=\cfrac{y}{π}\int_{-\infty}^{+\infty} \cfrac{f(x_0)}{(x-x_0)^2+y^2}\mathrm dx_0 u(x,y,z)=πy+(xx0)2+y2f(x0)dx0

演化问题的基本解

冲量原理:考虑一维受迫振动定解问题
{ ∂ 2 u ∂ t 2 − a 2 ∂ 2 u ∂ x 2 = f ( x , t ) ( t > 0 , 0 < x < l ) u ∣ x = 0 = u ∣ x = l = 0 u ∣ t = 0 = 0 , ∂ u ∂ t ∣ t = 0 = 0 \begin{cases} \cfrac{∂^2u}{∂t^2}-a^2\cfrac{∂^2u}{∂x^2}=f(x,t) & (t>0,0<x<l)\\ u|_{x=0}=u|_{x=l}=0 \\ u|_{t=0}=0,\cfrac{∂u}{∂t}|_{t=0}=0 \\ \end{cases} t22ua2x22u=f(x,t)ux=0=ux=l=0ut=0=0,tut=0=0(t>0,0<x<l)

这里 f ( x , t ) = F ( x , t ) ρ f(x,t)=\cfrac{F(x,t)}{\rho} f(x,t)=ρF(x,t) 是作用在弦单位长度单位质量上的外力。

考虑 [ τ , τ + Δ τ ) [τ,τ+Δτ) [τ,τ+Δτ) 时间段内的位移变化,令 w ∣ t = τ = 0 , w ∣ t = τ + Δ τ = Δ u w|_{t=τ}=0,w|_{t=τ+Δτ}=Δu wt=τ=0,wt=τ+Δτ=Δu
f ( x , τ ) Δ τ f(x,τ)Δτ f(x,τ)Δτ 表示 Δ τ Δτ Δτ 内冲量,这个冲量使得系统的速度有一定的增量。现在,我们把 Δ τ Δτ Δτ 时间内的速度增量看成是 t = τ t=τ t=τ 瞬时得到的,而在 Δ τ Δτ Δτ 的其余时间内没有冲量的作用,即在这段时间内没有力的作用,故方程是齐次的。 t = τ t=τ t=τ 时的集中速度可置于“初始”条件中,得到的关于瞬时力引起的振动的定解问题是
{ ∂ 2 w ∂ t 2 − a 2 ∂ 2 w ∂ x 2 = 0 w ∣ x = 0 = w ∣ x = l = 0 w ∣ t = τ = 0 , ∂ u ∂ t ∣ t = τ = f ( x , τ ) Δ τ ( τ < t < τ + Δ τ , 0 < x < l ) \begin{cases} \cfrac{∂^2w}{∂t^2}-a^2\cfrac{∂^2w}{∂x^2}=0 \\ w|_{x=0}=w|_{x=l}=0 \\ w|_{t=τ}=0,\cfrac{∂u}{∂t}|_{t=τ}=f(x,τ)Δτ \\ \end{cases}\quad( τ<t<τ+Δτ ,0<x<l) t22wa2x22w=0wx=0=wx=l=0wt=τ=0,tut=τ=f(x,τ)Δτ(τ<t<τ+Δτ,0<x<l)
w ( x , t ; τ , Δ τ ) = v ( x , t ; τ ) Δ τ w(x,t;τ,Δτ)=v(x,t;τ)Δτ w(x,t;τ,Δτ)=v(x,t;τ)Δτ
{ ∂ 2 v ∂ t 2 − a 2 ∂ 2 v ∂ x 2 = 0 v ∣ x = 0 = v ∣ x = l = 0 v ∣ t = τ = 0 , ∂ v ∂ t ∣ t = τ = f ( x , τ ) ( t > τ , 0 < x < l ) \begin{cases} \cfrac{∂^2v}{∂t^2}-a^2\cfrac{∂^2v}{∂x^2}=0 \\ v|_{x=0}=v|_{x=l}=0 \\ v|_{t=τ}=0,\cfrac{∂v}{∂t}|_{t=τ}=f(x,τ) \\ \end{cases}\quad( t>τ ,0<x<l) t22va2x22v=0vx=0=vx=l=0vt=τ=0,tvt=τ=f(x,τ)(t>τ,0<x<l)
于是
u ( x , t ) = lim ⁡ Δ τ → 0 ∑ τ = 0 t w ( x , t ; τ ) = ∫ 0 t v ( x , t ; τ ) d τ u(x,t) = \lim_{Δτ\to0}\sum_{τ=0}^tw(x,t;τ) =\int_0^tv(x,t;τ)\mathrm dτ u(x,t)=Δτ0limτ=0tw(x,t;τ)=0tv(x,t;τ)dτ

冲量原理:(齐次化原理)设 L L L 是关于 r = ( x 1 , x 2 , ⋯   , x n ) \mathbf r=(x_1,x_2,\cdots,x_n) r=(x1,x2,,xn) 的线性偏微分算子,若 v ( r , t ; τ ) v(\mathbf r,t;τ) v(r,t;τ) 满足齐次方程定解问题
{ ∂ m v ∂ t m − L [ v ] = 0 ( α ∂ v ∂ t + β v ) ∣ Σ = 0 v ∣ t = τ = ∂ v ∂ t ∣ t = τ = ⋯ = ∂ m − 2 v ∂ t m − 2 ∣ t = τ = 0 ∂ m − 1 v ∂ t m − 1 ∣ t = τ = f ( r , τ ) ( t > τ ) \begin{cases} \cfrac{∂^mv}{∂t^m}-L[v]=0 \\ (α\cfrac{∂v}{∂t}+βv)\Big|_{Σ}=0 \\ v\Big|_{t=τ}=\cfrac{∂v}{∂t}\Big|_{t=τ}=\cdots =\cfrac{∂^{m-2}v}{∂t^{m-2}}\Big|_{t=τ}=0 \\ \cfrac{∂^{m-1}v}{∂t^{m-1}}\Big|_{t=τ}=f(\mathbf r,τ) \end{cases}\quad(t>τ) tmmvL[v]=0(αtv+βv)Σ=0vt=τ=tvt=τ==tm2m2vt=τ=0tm1m1vt=τ=f(r,τ)(t>τ)

u ( r , t ) = ∫ 0 t v ( r , t ; τ ) d τ u(\mathbf r,t)=\int_0^tv(\mathbf r,t;τ)\mathrm dτ u(r,t)=0tv(r,t;τ)dτ
是以下非齐次方程定解问题的解
{ ∂ m u ∂ t m − L [ u ] = f ( r , t ) ( α ∂ u ∂ t + β u ) ∣ Σ = 0 u ∣ t = 0 = ∂ u ∂ t ∣ t = 0 = ⋯ = ∂ m − 1 u ∂ t m − 1 ∣ t = 0 = 0 ( t > 0 ) \begin{cases} \cfrac{∂^mu}{∂t^m}-L[u]=f(\mathbf r,t) \\ (α\cfrac{∂u}{∂t}+βu)\Big|_{Σ}=0 \\ u\Big|_{t=0}=\cfrac{∂u}{∂t}\Big|_{t=0}=\cdots =\cfrac{∂^{m-1}u}{∂t^{m-1}}\Big|_{t=0}=0 \end{cases}\quad(t>0) tmmuL[u]=f(r,t)(αtu+βu)Σ=0ut=0=tut=0==tm1m1ut=0=0(t>0)
以无界热传导初值问题为例,若 v ( r , t ; τ ) v(\mathbf r,t;τ) v(r,t;τ) 满足齐次方程初值问题
{ ∂ v ∂ t − a 2 Δ v = 0 ( t > τ ) v ∣ t = τ = f ( r , τ ) \begin{cases} \cfrac{∂v}{∂t}-a^2Δv=0 & (t>τ) \\ v|_{t=τ}=f(\mathbf r,τ) \end{cases} tva2Δv=0vt=τ=f(r,τ)(t>τ)
则积分 u ( r , t ) = ∫ 0 t v ( r , t ; τ ) d τ \displaystyle u(\mathbf r,t)=\int_0^tv(\mathbf r,t;τ)\mathrm dτ u(r,t)=0tv(r,t;τ)dτ 满足非齐次方程初值问题
{ ∂ u ∂ t − a 2 Δ u = f ( r , t ) ( t > 0 ) u ∣ t = 0 = 0 \begin{cases} \cfrac{∂u}{∂t}-a^2Δu=f(\mathbf r,t) & (t>0) \\ u|_{t=0}=0 \end{cases} tua2Δu=f(r,t)ut=0=0(t>0)

热传导方程初值问题:对于无界空间的热传导方程初值问题
{ ∂ u ∂ t − a 2 Δ u = f ( r , t ) ( t > 0 ) u ∣ t = 0 = ϕ ( r ) (4.1) \begin{cases} \cfrac{∂u}{∂t}-a^2Δu=f(\mathbf r,t) & (t>0) \\ u|_{t=0}=\phi(\mathbf r) \end{cases}\tag{4.1} tua2Δu=f(r,t)ut=0=ϕ(r)(t>0)(4.1)
由叠加原理知道, u = u 1 + u 2 u=u_1+u_2 u=u1+u2 ,其中 u 1 u_1 u1 满足初值问题
{ ∂ u 1 ∂ t − a 2 Δ u 1 = 0 ( t > 0 ) u 1 ∣ t = 0 = ϕ ( r ) \begin{cases} \cfrac{∂u_1}{∂t}-a^2Δu_1=0\quad(t>0) \\ u_1|_{t=0}=\phi(\mathbf r) \end{cases} tu1a2Δu1=0(t>0)u1t=0=ϕ(r)
代表在初始时刻瞬时给予热量的传导问题, u 2 u_2 u2 满足初值问题
{ ∂ u 2 ∂ t − a 2 Δ u 2 = f ( r , t ) ( t > 0 ) u 2 ∣ t = 0 = 0 , \begin{cases} \cfrac{∂u_2}{∂t}-a^2Δu_2=f(\mathbf r,t)\quad(t>0) \\ u_2|_{t=0}=0 \end{cases},\quad tu2a2Δu2=f(r,t)(t>0)u2t=0=0,
代表持续热源下的热传导。由 δ δ δ 函数的性质知道,空间持续热源可看做瞬时点源的叠加
f ( r , t ) = ∭ d V 0 ∫ f ( r 0 , t 0 ) δ ( r − r 0 ) δ ( t − t 0 ) d t 0 f(\mathbf r,t)=\iiint\mathrm dV_0 \int f(\mathbf{r_0},t_0)δ(\mathbf{r-r_0})δ(t-t_0)\mathrm dt_0 f(r,t)=dV0f(r0,t0)δ(rr0)δ(tt0)dt0
将空间点 r 0 \mathbf{r_0} r0 t 0 t_0 t0 时刻的热源在 r , t \mathbf r,t r,t 引起的温度记作 G ( r , t ; r 0 , t 0 ) G(\mathbf{r},t;\mathbf{r_0},t_0) G(r,t;r0,t0) 称为热传导方程的格林函数。 G G G 满足的初值问题
{ G t − a 2 Δ G = δ ( r − r 0 ) δ ( t − t 0 ) G ∣ t = t 0 = 0 (4.2) \begin{cases} G_{t}-a^2ΔG=δ(\mathbf{r-r_0})δ(t-t_0) \\ G|_{t=t_0}=0\end{cases}\tag{4.2} {Gta2ΔG=δ(rr0)δ(tt0)Gt=t0=0(4.2)
方程中 t = t 0 t=t_0 t=t0 时刻即代表初始时刻,之前无任何热源作用, t < t 0 t<t_0 t<t0 时刻 G G G 均为零。
τ = t − t 0 \tau=t-t_0 τ=tt0 由冲量原理,若 v ( r , τ ; τ 0 ) v(\mathbf r,\tau;\tau_0) v(r,τ;τ0) 满足齐次方程初值问题
{ v τ − a 2 Δ v = 0 v ∣ τ = τ 0 = δ ( r − r 0 ) δ ( τ 0 ) \begin{cases} v_{\tau}-a^2Δv=0 \\ v|_{\tau=\tau_0}=δ(\mathbf{r-r_0})δ(\tau_0) \end{cases} {vτa2Δv=0vτ=τ0=δ(rr0)δ(τ0)

则格林函数 G = ∫ 0 τ v ( r , τ ; τ 0 ) d τ 0 \displaystyle G=\int_0^\tau v(\mathbf r,\tau;\tau_0)\mathrm d\tau_0 G=0τv(r,τ;τ0)dτ0
v ( r , τ ; τ 0 ) v(\mathbf r,\tau;\tau_0) v(r,τ;τ0) 满足的齐次方程和初值条件积分可以得到
{ G τ − a 2 Δ G = 0 G ∣ τ = τ 0 = δ ( r − r 0 ) \begin{cases} G_\tau-a^2ΔG=0 \\ G|_{\tau=\tau_0}=δ(\mathbf{r-r_0}) \end{cases} {Gτa2ΔG=0Gτ=τ0=δ(rr0)
上式取 τ 0 = 0 \tau_0=0 τ0=0 ,并将 τ = t − t 0 \tau=t-t_0 τ=tt0 代回,可知格林函数满足的定解问题 (4.2) 等价于以下定解问题
{ G t − a 2 Δ G = 0 G ∣ t = t 0 = δ ( r − r 0 ) \begin{cases} G_{t}-a^2ΔG=0 \\ G|_{t=t_0}=δ(\mathbf{r-r_0})\end{cases} {Gta2ΔG=0Gt=t0=δ(rr0)
由冲量原理和积分叠加原理,进一步可求得
u 2 ( r , t ) = ∭ d V 0 ∫ 0 t G ( r , t ; r 0 , t 0 ) f ( r 0 , t 0 ) d t 0 u_2(\mathbf r,t)=\iiint\mathrm dV_0\int_0^t G(\mathbf{r},t;\mathbf{r_0},t_0)f(\mathbf r_0,t_0)\mathrm dt_0 u2(r,t)=dV00tG(r,t;r0,t0)f(r0,t0)dt0
为求得 G ( r , t ; r 0 , t 0 ) G(\mathbf{r},t;\mathbf{r_0},t_0) G(r,t;r0,t0) ,不妨先求满足定解问题
{ U t − a 2 Δ U = 0 U ∣ t = 0 = δ ( r ) (4.3) \begin{cases} U_{t}-a^2ΔU=0 \\ U|_{t=0}=δ(\mathbf r) \end{cases} \tag{4.3} {Uta2ΔU=0Ut=0=δ(r)(4.3)
基本解 U ( r , t ) U(\mathbf r,t) U(r,t) ,代表初始瞬间原点给予热量 Q = c ρ Q=c\rho Q=cρ 后的温度分布。做变量变换有
G ( r , t ; r 0 , t 0 ) = U ( r − r 0 , t − t 0 ) (4.4) G(\mathbf{r},t;\mathbf{r_0},t_0)=U(\mathbf{r-r_0},t-t_0)\tag{4.4} G(r,t;r0,t0)=U(rr0,tt0)(4.4)
进而有
u 2 ( r , t ) = ∭ d V 0 ∫ 0 t U ( r − r 0 , t ) f ( r 0 , t 0 ) d t 0 = ∫ 0 t U ( r , t − t 0 ) ∗ f ( r , t 0 ) d t 0 u_2(\mathbf r,t)=\iiint\mathrm dV_0\int_0^t U(\mathbf{r-r_0},t)f(\mathbf r_0,t_0)\mathrm dt_0 =\int_0^tU(\mathbf{r},t-t_0)*f(\mathbf r,t_0)\mathrm dt_0 u2(r,t)=dV00tU(rr0,t)f(r0,t0)dt0=0tU(r,tt0)f(r,t0)dt0
由于 ϕ ( r ) = δ ( r ) ∗ ϕ ( r ) \phi(\mathbf r)=δ(\mathbf r)*\phi(\mathbf r) ϕ(r)=δ(r)ϕ(r) ,根据叠加原理有
u 1 ( r , t ) = ∭ U ( r − r 0 , t ) ϕ ( r 0 ) d V 0 = U ( r , t ) ∗ ϕ ( r ) u_1(\mathbf r,t)=\iiint U(\mathbf{r-r_0},t)\phi(\mathbf r_0) \mathrm dV_0 =U(\mathbf{r},t)*\phi(\mathbf r) u1(r,t)=U(rr0,t)ϕ(r0)dV0=U(r,t)ϕ(r)
所以
u ( r , t ) = U ( r , t ) ∗ ϕ ( r ) + ∫ 0 t U ( r , t − t 0 ) ∗ f ( r , t 0 ) d t 0 (4.5) u(\mathbf{r},t)=U(\mathbf{r},t)*\phi(\mathbf r)+ \int_0^tU(\mathbf{r},t-t_0)*f(\mathbf r,t_0)\mathrm dt_0\tag{4.5} u(r,t)=U(r,t)ϕ(r)+0tU(r,tt0)f(r,t0)dt0(4.5)
可带入 (4.1) 可直接验证上述结论。

波动方程初值问题:对于无界空间的波动方程初值问题
{ ∂ 2 u ∂ t 2 − a 2 Δ u = f ( r , t ) ( t > 0 ) u ∣ t = 0 = ϕ ( r ) , ∂ u ∂ t ∣ t = 0 = ψ ( r ) (4.6) \begin{cases} \cfrac{∂^2u}{∂t^2}-a^2Δu=f(\mathbf r,t) & (t>0) \\ u|_{t=0}=\phi(\mathbf r),\quad \cfrac{∂u}{∂t}|_{t=0}=\psi(\mathbf r) \end{cases}\tag{4.6} t22ua2Δu=f(r,t)ut=0=ϕ(r),tut=0=ψ(r)(t>0)(4.6)
同样由叠加原理知道, u = u 1 + u 2 + u 3 u=u_1+u_2+u_3 u=u1+u2+u3 ,分别满足初值问题
{ ∂ 2 u 1 ∂ t 2 − a 2 Δ u 1 = f ( r , t ) ( t > 0 ) u 1 ∣ t = 0 = ∂ u 1 ∂ t ∣ t = 0 = 0 \begin{cases} \cfrac{∂^2u_1}{∂t^2}-a^2Δu_1=f(\mathbf r,t)\quad(t>0) \\ u_1|_{t=0}=\cfrac{∂u_1}{∂t}|_{t=0}=0 \end{cases} t22u1a2Δu1=f(r,t)(t>0)u1t=0=tu1t=0=0
代表持续作用的力引起的波动
{ ∂ 2 u 2 ∂ t 2 − a 2 Δ u 2 = 0 ( t > 0 ) u 2 ∣ t = 0 = 0 , ∂ u 2 ∂ t ∣ t = 0 = ψ ( r ) \begin{cases} \cfrac{∂^2u_2}{∂t^2}-a^2Δu_2=0\quad(t>0) \\ u_2|_{t=0}=0,\quad \cfrac{∂u_2}{∂t}|_{t=0}=\psi(\mathbf r) \end{cases} t22u2a2Δu2=0(t>0)u2t=0=0,tu2t=0=ψ(r)
代表初始时刻瞬时冲量引起的波动
{ ∂ 2 u 3 ∂ t 2 − a 2 Δ u 3 = 0 ( t > 0 ) u 3 ∣ t = 0 = ϕ ( r ) , ∂ u 3 ∂ t ∣ t = 0 = 0 \begin{cases} \cfrac{∂^2u_3}{∂t^2}-a^2Δu_3=0\quad(t>0) \\ u_3|_{t=0}=\phi(\mathbf r),\quad \cfrac{∂u_3}{∂t}|_{t=0}=0 \end{cases} t22u3a2Δu3=0(t>0)u3t=0=ϕ(r),tu3t=0=0
同样林函数 G ( r , t ; r 0 , t 0 ) G(\mathbf{r},t;\mathbf{r_0},t_0) G(r,t;r0,t0) 满足的定解问题为
{ G t t − a 2 Δ G = δ ( r − r 0 ) δ ( t − t 0 ) G ∣ t = t 0 = 0 , ∂ G ∂ t ∣ t = t 0 = 0 (4.7) \begin{cases} G_{tt}-a^2ΔG=δ(\mathbf{r-r_0})δ(t-t_0) \\ G|_{t=t_0}=0,\quad \cfrac{∂G}{∂t}|_{t=t_0}=0 \end{cases}\tag{4.7} Gtta2ΔG=δ(rr0)δ(tt0)Gt=t0=0,tGt=t0=0(4.7)
方程中 t = t 0 t=t_0 t=t0 时刻即代表初始时刻,之前无任何力的作用, t < t 0 t<t_0 t<t0 时刻 G G G 均为零。
根据冲量原理和积分叠加原理定解问题 (4.7) 等价于
{ G t t − a 2 Δ G = 0 G ∣ t = t 0 = 0 , ∂ G ∂ t ∣ t = t 0 = δ ( r − r 0 ) \begin{cases} G_{tt}-a^2ΔG=0 \\ G|_{t=t_0}=0,\quad \cfrac{∂G}{∂t}|_{t=t_0}=δ(\mathbf{r-r_0}) \end{cases} Gtta2ΔG=0Gt=t0=0,tGt=t0=δ(rr0)
不妨先求 基本解 U ( r , t ) U(\mathbf r,t) U(r,t) 满足的定解问题
{ U t t − a 2 Δ U = 0 U ∣ t = 0 = 0 , ∂ U ∂ t ∣ t = 0 = δ ( r ) (4.8) \begin{cases} U_{tt}-a^2ΔU=0 \\ U|_{t=0}=0,\quad \cfrac{∂U}{∂t}|_{t=0}=δ(\mathbf{r}) \end{cases}\tag{4.8} Utta2ΔU=0Ut=0=0,tUt=0=δ(r)(4.8)
代表初始时刻在原点处的瞬时冲量引起的波动。变量代换可求得
G ( r , t ; r 0 , t 0 ) = U ( r − r 0 , t − t 0 ) (4.9) G(\mathbf{r},t;\mathbf{r_0},t_0)=U(\mathbf{r-r_0},t-t_0)\tag{4.9} G(r,t;r0,t0)=U(rr0,tt0)(4.9)
根据冲量原理和积分叠加原理,进而有
u 1 ( r , t ) = ∭ d V 0 ∫ 0 t U ( r − r 0 , t − t 0 ) f ( r 0 , t 0 ) d t 0 = ∫ 0 t U ( r , t − t 0 ) ∗ f ( r , t 0 ) d t 0 u 2 ( r , t ) = ∭ U ( r − r 0 , t ) ϕ ( r 0 ) d V 0 = U ( r , t ) ∗ ψ ( r ) \begin{aligned} & u_1(\mathbf r,t)=\iiint\mathrm dV_0\int_0^t U(\mathbf{r-r_0},t-t_0)f(\mathbf r_0,t_0)\mathrm dt_0 =\int_0^tU(\mathbf{r},t-t_0)*f(\mathbf r,t_0)\mathrm dt_0 \\ & u_2(\mathbf r,t)=\iiint U(\mathbf{r-r_0},t)\phi(\mathbf r_0) \mathrm dV_0 =U(\mathbf{r},t)*\psi(\mathbf r) \end{aligned} u1(r,t)=dV00tU(rr0,tt0)f(r0,t0)dt0=0tU(r,tt0)f(r,t0)dt0u2(r,t)=U(rr0,t)ϕ(r0)dV0=U(r,t)ψ(r)

u 3 = ∂ v ∂ t u_3=\cfrac{∂v}{∂t} u3=tv ,则有
{ ∂ 2 v ∂ t 2 − a 2 Δ v = 0 ( t > 0 ) v ∣ t = 0 = 0 , ∂ v ∂ t ∣ t = 0 = ϕ ( r ) \begin{cases} \cfrac{∂^2v}{∂t^2}-a^2Δv=0\quad(t>0) \\ v|_{t=0}=0,\quad \cfrac{∂v}{∂t}|_{t=0}=\phi(\mathbf r) \end{cases} t22va2Δv=0(t>0)vt=0=0,tvt=0=ϕ(r)
v = U ( r , t ) ∗ ϕ ( r ) v=U(\mathbf r,t)*\phi(\mathbf r) v=U(r,t)ϕ(r) u 3 = ∂ v ∂ t u_3=\cfrac{∂v}{∂t} u3=tv 满足 u 3 u_3 u3 的初值问题,所以
u ( r , t ) = U ( r , t ) ∗ ψ ( r ) + ∂ ∂ t [ U ( r , t ) ∗ ϕ ( r ) ] + ∫ 0 t U ( r , t − t 0 ) ∗ f ( r , t 0 ) d t 0 (4.10) u(\mathbf r,t)=U(\mathbf r,t)*\psi(\mathbf r)+ \cfrac{∂}{∂t}[U(\mathbf r,t)*\phi(\mathbf r)]+ \int_0^tU(\mathbf{r},t-t_0)*f(\mathbf r,t_0)\mathrm dt_0\tag{4.10} u(r,t)=U(r,t)ψ(r)+t[U(r,t)ϕ(r)]+0tU(r,tt0)f(r,t0)dt0(4.10)
基本解的求法: 基本解 U ( r , t ) U(\mathbf r,t) U(r,t) 没有边界条件限制,因此不是惟一的,适当选取即可。

三维无界热传导方程初值问题的基本解:(可用傅里叶变换法求得)
U ( r , t ) = ( 1 2 a π t ) 3 exp ⁡ ( − ∣ r ∣ 2 4 a 2 t ) U(\mathbf r,t)=(\cfrac{1}{2a\sqrt{\pi t}})^3\exp(-\cfrac{|\mathbf r|^2}{4a^2t}) U(r,t)=(2aπt 1)3exp(4a2tr2)

三维无界波动方程初值问题的基本解:(可用傅里叶变换法求得)
U ( r , t ) = ( 1 2 π ) 3 ∭ − ∞ − ∞ sin ⁡ ( r 0 a t ) r 0 a exp ⁡ ( i r 0 ⋅ r ) d V 0 U(\mathbf r,t)=(\cfrac{1}{2\pi})^3\iiint\limits_{-\infty}^{-\infty} \cfrac{\sin(r_0at)}{r_0a}\exp(\mathrm i\mathbf{r_0\cdot r})\mathrm dV_0 U(r,t)=(2π1)3r0asin(r0at)exp(ir0r)dV0

其中 r 0 = ∣ r 0 ∣ , r = ∣ r ∣ r_0=|\mathbf r_0|,r=|\mathbf r| r0=r0,r=r 。以 r \mathbf r r 为极轴方向取球坐标,则
U ( r , t ) = δ ( r − a t ) 4 π a r U(\mathbf r,t)=\cfrac{δ(r-at)}{4\pi ar} U(r,t)=4πarδ(rat)

一般演化问题的格林函数

波动方程定解问题:一般强迫振动波动方程的定解问题
{ u t t − a 2 Δ u = f ( r , t ) ( t > 0 , r ∈ V ) ( α ∂ u ∂ n + β u ) ∣ Σ = σ ( r , t ) ( t > 0 , r ∈ Σ ) u ∣ t = 0 = ϕ ( r ) , ∂ u ∂ t ∣ t = 0 = ψ ( r , ) ( t > 0 , r ∈ V ) (5.1) \begin{cases} u_{tt}-a^2Δu=f(\mathbf r,t) & (t>0,\mathbf r\in V) \\ (α\cfrac{∂u}{∂n}+βu)\Big|_{Σ}=σ(\mathbf r,t) & (t>0,\mathbf r\in Σ) \\ u|_{t=0}=\phi(\mathbf r),\quad \cfrac{∂u}{∂t}|_{t=0}=\psi(\mathbf r,) &(t>0,\mathbf r\in V) \end{cases}\tag{5.1} utta2Δu=f(r,t)(αnu+βu)Σ=σ(r,t)ut=0=ϕ(r),tut=0=ψ(r,)(t>0,rV)(t>0,rΣ)(t>0,rV)(5.1)
δ δ δ 函数的性质知道,持续力 f ( r , t ) f(\mathbf r,t) f(r,t) 可表示为
f ( r , t ) = ∭ V d V 0 ∫ t f ( r 0 , t 0 ) δ ( r − r 0 ) δ ( t − t 0 ) d t 0 f(\mathbf r,t)=\iiint\limits_V\mathrm dV_0 \int_t f(\mathbf{r_0},t_0)δ(\mathbf{r-r_0})δ(t-t_0)\mathrm dt_0 f(r,t)=VdV0tf(r0,t0)δ(rr0)δ(tt0)dt0
波动方程的格林函数 G ( r , t ; r 0 , t 0 ) G(\mathbf{r},t;\mathbf{r_0},t_0) G(r,t;r0,t0) 满足的定解问题是
{ G t t − a 2 Δ G = δ ( r − r 0 ) δ ( t − t 0 ) ( t , t 0 > 0 , r ∈ V ) ( α ∂ G ∂ n + β G ) ∣ Σ = 0 ( t , t 0 > 0 , r ∈ Σ ) G ∣ t = t 0 = 0 , ∂ G ∂ t ∣ t = t 0 = 0 ( t , t 0 > 0 , r ∈ V ) (5.2) \begin{cases} G_{tt}-a^2ΔG=δ(\mathbf{r-r_0})δ(t-t_0) & (t,t_0>0,\mathbf r\in V) \\ (α\cfrac{∂G}{∂n}+βG)\Big|_{Σ}=0 & (t,t_0>0,\mathbf r\in Σ) \\ G|_{t=t_0}=0,\quad \cfrac{∂G}{∂t}|_{t=t_0}=0 & (t,t_0>0,\mathbf r\in V) \end{cases}\tag{5.2} Gtta2ΔG=δ(rr0)δ(tt0)(αnG+βG)Σ=0Gt=t0=0,tGt=t0=0(t,t0>0,rV)(t,t0>0,rΣ)(t,t0>0,rV)(5.2)
方程中 t = t 0 t=t_0 t=t0 时刻即代表初始时刻, G ∣ t < t 0 ≡ 0 G|_{t<t_0}\equiv0 Gt<t00 。我们可以用和解泊松方程类似的方法求解波动方程解的积分表达式,首先讨论格林函数的对称性。

格林函数的对称性
G ( r 1 , t 1 ; r 2 , t 2 ) = G ( r 2 , − t 2 ; r 1 , − t 1 ) (5.3) G(\mathbf{r_1},t_1;\mathbf{r_2},t_2)=G(\mathbf{r_2},-t_2;\mathbf{r_1},-t_1)\tag{5.3} G(r1,t1;r2,t2)=G(r2,t2;r1,t1)(5.3)
引入两个格林函数 G ( r , t ; r 1 , t 1 ) , G ( r , − t ; r 2 , − t 2 ) G(\mathbf{r},t;\mathbf{r_1},t_1),G(\mathbf{r},-t;\mathbf{r_2},-t_2) G(r,t;r1,t1),G(r,t;r2,t2),简记为 G 1 , G 2 G_1,G_2 G1,G2 ,分别是下面定解问题的解
{ ∂ 2 G 1 ∂ t 2 − a 2 Δ G 1 = δ ( r − r 1 ) δ ( t − t 1 ) ( α ∂ G 1 ∂ n + β G 1 ) ∣ Σ = 0 G 1 ∣ t = t 1 = 0 , ∂ G 1 ∂ t ∣ t = t 1 = 0 , { ∂ 2 G 2 ∂ ( − t ) 2 − a 2 Δ G 2 = δ ( r − r 2 ) δ ( t + t 2 ) ( α ∂ G 2 ∂ n + β G 2 ) ∣ Σ = 0 G 2 ∣ − t = − t 2 = 0 , ∂ G 2 ∂ t ∣ − t = − t 2 = 0 \begin{cases} \cfrac{∂^2G_1}{∂t^2}-a^2ΔG_1=δ(\mathbf{r-r_1})δ(t-t_1) \\ (α\cfrac{∂G_1}{∂n}+βG_1)\Big|_{Σ}=0 \\ G_1|_{t=t_1}=0,\quad \cfrac{∂G_1}{∂t}|_{t=t_1}=0 \end{cases}, \quad \begin{cases} \cfrac{∂^2G_2}{∂(-t)^2}-a^2ΔG_2=δ(\mathbf{r-r_2})δ(t+t_2) \\ (α\cfrac{∂G_2}{∂n}+βG_2)\Big|_{Σ}=0 \\ G_2|_{-t=-t_2}=0,\quad \cfrac{∂G_2}{∂t}|_{-t=-t_2}=0 \end{cases} t22G1a2ΔG1=δ(rr1)δ(tt1)(αnG1+βG1)Σ=0G1t=t1=0,tG1t=t1=0,(t)22G2a2ΔG2=δ(rr2)δ(t+t2)(αnG2+βG2)Σ=0G2t=t2=0,tG2t=t2=0
其中 r 1 , r 2 ∈ V , t > t 1 , t 2 > 0 \mathbf{r_1,r_2}\in V,\quad t>t_1,t_2>0 r1,r2V,t>t1,t2>0
利用 δ δ δ 函数的性质和格林公式,在空间区域 V V V 和 时间区间 [ 0 , t ] [0,t] [0,t] 上积分,上述方程可以得到
G ( r 1 , t 1 ; r 2 , t 2 ) − G ( r 2 , − t 2 ; r 1 , − t 1 ) = ∭ V d V ∫ 0 t [ G 2 δ ( r − r 1 ) δ ( t − t 1 ) − G 1 δ ( r − r 2 ) δ ( t + t 2 ) ] d t = ∭ V d V ∫ 0 t [ G 2 ( ∂ 2 G 1 ∂ t 2 − a 2 Δ G 1 ) − G 1 ( ∂ 2 G 2 ∂ ( − t ) 2 − a 2 Δ G 2 ) ] d t = ∭ V d V ∫ 0 t [ ( G 2 ∂ 2 G 1 ∂ t 2 − G 1 ∂ 2 G 2 ∂ t 2 ) + a 2 ( G 1 Δ G 2 − G 2 Δ G 1 ) ] d t = ∭ V d V [ G 2 ∂ G 1 ∂ t − G 1 ∂ G 2 ∂ t ] ∣ 0 t + a 2 ∫ 0 t d t ∬ Σ ( G 1 ∂ G 2 ∂ n − G 2 ∂ G 1 ∂ n ) d S \begin{aligned} & G(\mathbf{r_1},t_1;\mathbf{r_2},t_2)-G(\mathbf{r_2},-t_2;\mathbf{r_1},-t_1) \\ =& \iiint\limits_{V}\mathrm dV \int_0^t [G_2δ(\mathbf{r-r_1})δ(t-t_1)-G_1δ(\mathbf{r-r_2})δ(t+t_2)]\mathrm dt \\ = & \iiint\limits_{V}\mathrm dV \int_0^t [G_2(\cfrac{∂^2G_1}{∂t^2}-a^2ΔG_1)-G_1(\cfrac{∂^2G_2}{∂(-t)^2}-a^2ΔG_2)]\mathrm dt \\ =& \iiint\limits_{V}\mathrm dV \int_0^t [(G_2\cfrac{∂^2G_1}{∂t^2}-G_1\cfrac{∂^2G_2}{∂t^2})+a^2(G_1ΔG_2-G_2ΔG_1)]\mathrm dt \\ =& \iiint\limits_{V}\mathrm dV [G_2\cfrac{∂G_1}{∂t}-G_1\cfrac{∂G_2}{∂t}]\Big|_{0}^t +a^2\int_0^t\mathrm dt\iint\limits_{Σ}(G_1\cfrac{∂G_2}{∂n}-G_2\cfrac{∂G_1}{∂n})\mathrm dS \end{aligned} ====G(r1,t1;r2,t2)G(r2,t2;r1,t1)VdV0t[G2δ(rr1)δ(tt1)G1δ(rr2)δ(t+t2)]dtVdV0t[G2(t22G1a2ΔG1)G1((t)22G2a2ΔG2)]dtVdV0t[(G2t22G1G1t22G2)+a2(G1ΔG2G2ΔG1)]dtVdV[G2tG1G1tG2]0t+a20tdtΣ(G1nG2G2nG1)dS
将上述两个边界条件分别乘以 G 2 , G 1 G_2,G_1 G2,G1 ,相减可以得到
( G 1 ∂ G 2 ∂ n − G 2 ∂ G 1 ∂ n ) ∣ Σ = 0 (G_1\cfrac{∂G_2}{∂n}-G_2\cfrac{∂G_1}{∂n})\Big|_Σ=0 (G1nG2G2nG1)Σ=0
带入初始条件我们又可以得到
[ G 2 ∂ G 1 ∂ t − G 1 ∂ G 2 ∂ t ] ∣ 0 t = 0 [G_2\cfrac{∂G_1}{∂t}-G_1\cfrac{∂G_2}{∂t}]\Big|_{0}^t=0 [G2tG1G1tG2]0t=0
于是有
G ( r 1 , t 1 ; r 2 , t 2 ) = G ( r 2 , − t 2 ; r 1 , − t 1 ) G(\mathbf{r_1},t_1;\mathbf{r_2},t_2)=G(\mathbf{r_2},-t_2;\mathbf{r_1},-t_1) G(r1,t1;r2,t2)=G(r2,t2;r1,t1)

tips:

  1. ∂ G ∂ t = ∂ G ∂ ( − t ) d ( − t ) d t = − ∂ G ∂ ( − t ) \cfrac{∂G}{∂t}=\cfrac{∂G}{∂(-t)}\cfrac{\mathrm d(-t)}{\mathrm dt}=-\cfrac{∂G}{∂(-t)} tG=(t)Gdtd(t)=(t)G
    t 1 , t 2 t_1,t_2 t1,t2 位置互换时出现的负号,正好保证了时间的先后次序不变,否则就会有悖于因果律的要求。
  2. ∂ 2 G ∂ t 2 = ∂ 2 G ∂ ( − t ) 2 \cfrac{∂^2G}{∂t^2}=\cfrac{∂^2G}{∂(-t)^2} t22G=(t)22G
  3. 波动方程中重要的偏微分
    ∂ ∂ t ( G 2 ∂ G 1 ∂ t − G 1 ∂ G 2 ∂ t ) = ( ∂ G 2 ∂ t ∂ G 1 ∂ t + G 2 ∂ 2 G 1 ∂ t 2 ) − ( ∂ G 1 ∂ t ∂ G 2 ∂ t + G 1 ∂ 2 G 2 ∂ t 2 ) = G 2 ∂ 2 G 1 ∂ t 2 − G 1 ∂ 2 G 2 ∂ t 2 \begin{aligned} &\cfrac{∂}{∂t}(G_2\cfrac{∂G_1}{∂t}-G_1\cfrac{∂G_2}{∂t}) \\ = & (\cfrac{∂G_2}{∂t}\cfrac{∂G_1}{∂t}+G_2\cfrac{∂^2G_1}{∂t^2}) -(\cfrac{∂G_1}{∂t}\cfrac{∂G_2}{∂t}+G_1\cfrac{∂^2G_2}{∂t^2}) \\ = & G_2\cfrac{∂^2G_1}{∂t^2}-G_1\cfrac{∂^2G_2}{∂t^2} \end{aligned} ==t(G2tG1G1tG2)(tG2tG1+G2t22G1)(tG1tG2+G1t22G2)G2t22G1G1t22G2
  4. 热传导方程中重要的偏微分
    G 2 ∂ G 1 ∂ t + G 1 ∂ G 2 ∂ t = ∂ ( G 1 G 2 ) ∂ t G_2\cfrac{∂G_1}{∂t}+G_1\cfrac{∂G_2}{∂t}=\cfrac{∂(G_1G_2)}{∂t} G2tG1+G1tG2=t(G1G2)

解的积分表达式:将波动方程定解问题中的 r , t \mathbf r,t r,t 改写成 r 0 , t 0 \mathbf r_0,t_0 r0,t0
{ ∂ 2 u ( r 0 , t 0 ) ∂ t 0 2 − a 2 Δ 0 u ( r 0 , t 0 ) = f ( r 0 , t 0 ) [ α ∂ u ( r 0 , t 0 ) ∂ n 0 + β u ( r 0 , t 0 ) ] ∣ Σ = σ ( r 0 , t 0 ) u ( r 0 , t 0 ) ∣ t 0 = 0 = ϕ ( r 0 ) , ∂ u ( r 0 , t 0 ) ∂ t 0 ∣ t 0 = 0 = ψ ( r 0 ) \begin{cases} \cfrac{∂^2u(\mathbf r_0,t_0)}{∂t_0^2}-a^2Δ_0u(\mathbf r_0,t_0)=f(\mathbf r_0,t_0) \\ [α\cfrac{∂u(\mathbf r_0,t_0)}{∂n_0}+βu(\mathbf r_0,t_0)]\Big|_{Σ}=σ(\mathbf r_0,t_0) \\ u(\mathbf r_0,t_0)|_{t_0=0}=\phi(\mathbf r_0),\quad \cfrac{∂u(\mathbf r_0,t_0)}{∂t_0}|_{t_0=0}=\psi(\mathbf r_0) \end{cases} t022u(r0,t0)a2Δ0u(r0,t0)=f(r0,t0)[αn0u(r0,t0)+βu(r0,t0)]Σ=σ(r0,t0)u(r0,t0)t0=0=ϕ(r0),t0u(r0,t0)t0=0=ψ(r0)
再将格林函数定解问题中的 r , t \mathbf r,t r,t 改换成 r 0 , − t 0 \mathbf r_0,-t_0 r0,t0 ,将 r 0 , t 0 \mathbf r_0,t_0 r0,t0 改换成 r , − t \mathbf r,-t r,t 同时利用对称关系,得
{ ∂ 2 G ( r , t ; r 0 , t 0 ) ∂ t 0 2 − a 2 Δ 0 G ( r , t ; r 0 , t 0 ) = δ ( r − r 0 ) δ ( t − t 0 ) [ α ∂ G ( r , t ; r 0 , t 0 ) ∂ n 0 + β G ( r , t ; r 0 , t 0 ) ] ∣ Σ = 0 G ( r , t ; r 0 , t 0 ) ∣ − t 0 = − t = 0 , ∂ G ( r , t ; r 0 , t 0 ) ∂ t 0 ∣ − t 0 = − t = 0 \begin{cases} \cfrac{∂^2G(\mathbf r,t;\mathbf r_0,t_0)}{∂t_0^2} -a^2Δ_0G(\mathbf r,t;\mathbf r_0,t_0)=δ(\mathbf{r-r_0})δ(t-t_0) \\ [α\cfrac{∂G(\mathbf r,t;\mathbf r_0,t_0)}{∂n_0} +βG(\mathbf r,t;\mathbf r_0,t_0)]\Big|_{Σ}=0 \\ G(\mathbf r,t;\mathbf r_0,t_0)|_{-t_0=-t}=0,\quad \cfrac{∂G(\mathbf r,t;\mathbf r_0,t_0)}{∂t_0}|_{-t_0=-t}=0 \end{cases} t022G(r,t;r0,t0)a2Δ0G(r,t;r0,t0)=δ(rr0)δ(tt0)[αn0G(r,t;r0,t0)+βG(r,t;r0,t0)]Σ=0G(r,t;r0,t0)t0=t=0,t0G(r,t;r0,t0)t0=t=0
两方程交叉相乘 G ( r , t ; r 0 , t 0 ) , u ( r 0 , t 0 ) G(\mathbf r,t;\mathbf r_0,t_0),u(\mathbf r_0,t_0) G(r,t;r0,t0),u(r0,t0) 相减,再积分
∭ V d V 0 ∫ 0 t + 0 [ G ∂ 2 u ( r 0 , t 0 ) ∂ t 0 2 − u ( r 0 , t 0 ) ∂ 2 G ∂ t 0 2 ] d t 0 − a 2 ∭ V d V 0 ∫ 0 t + 0 [ G Δ 0 u ( r 0 , t 0 ) − u ( r 0 , t 0 ) Δ 0 G ] d t 0 = ∭ V d V 0 ∫ 0 t + 0 G f ( r 0 , t 0 ) d t 0 − ∭ V d V 0 ∫ 0 t + 0 u ( r 0 , t 0 ) δ ( r − r 0 ) δ ( t − t 0 ) d t 0 \begin{aligned} & \iiint\limits_V\mathrm dV_0\int_0^{t+0} [G\cfrac{∂^2u(\mathbf r_0,t_0)}{∂t_0^2}-u(\mathbf r_0,t_0)\cfrac{∂^2G}{∂t_0^2}]\mathrm dt_0 \\ & -a^2\iiint\limits_V\mathrm dV_0\int_0^{t+0} [GΔ_0u(\mathbf r_0,t_0)-u(\mathbf r_0,t_0)Δ_0G]\mathrm dt_0 \\ =& \iiint\limits_V\mathrm dV_0\int_0^{t+0} Gf(\mathbf r_0,t_0)\mathrm dt_0 \\ & - \iiint\limits_V\mathrm dV_0\int_0^{t+0} u(\mathbf r_0,t_0)δ(\mathbf{r-r_0})δ(t-t_0)\mathrm dt_0 \end{aligned} =VdV00t+0[Gt022u(r0,t0)u(r0,t0)t022G]dt0a2VdV00t+0[GΔ0u(r0,t0)u(r0,t0)Δ0G]dt0VdV00t+0Gf(r0,t0)dt0VdV00t+0u(r0,t0)δ(rr0)δ(tt0)dt0
利用 δ δ δ 函数的性质和格林公式可得到
u ( r , t ) = ∭ V d V 0 ∫ 0 t + 0 G f ( r 0 , t 0 ) d t 0 − ∭ V [ G ∂ u ( r 0 , t 0 ) ∂ t 0 − u ( r 0 , t 0 ) ∂ G ∂ t 0 ] ∣ t 0 = 0 t 0 = t + 0 d V 0 + a 2 ∫ 0 t + 0 d t 0 ∬ Σ [ G ∂ u ( r 0 , t 0 ) ∂ n 0 − u ( r 0 , t 0 ) ∂ G ∂ n 0 ] d S 0 \begin{aligned} u(\mathbf r,t)= & \iiint\limits_V\mathrm dV_0\int_0^{t+0} Gf(\mathbf r_0,t_0)\mathrm dt_0 \\ & -\iiint\limits_V [G\cfrac{∂u(\mathbf r_0,t_0)}{∂t_0}-u(\mathbf r_0,t_0)\cfrac{∂G}{∂t_0}]\Big|_{t_0=0}^{t_0=t+0} \mathrm dV_0\\ &+a^2\int_0^{t+0}\mathrm dt_0 \iint\limits_Σ[G\cfrac{∂u(\mathbf r_0,t_0)}{∂n_0}-u(\mathbf r_0,t_0)\cfrac{∂G}{∂n_0}]\mathrm dS_0 \end{aligned} u(r,t)=VdV00t+0Gf(r0,t0)dt0V[Gt0u(r0,t0)u(r0,t0)t0G]t0=0t0=t+0dV0+a20t+0dt0Σ[Gn0u(r0,t0)u(r0,t0)n0G]dS0
带入初始条件和边界条件
u ( r , t ) = ∭ V d V 0 ∫ 0 t G f ( r 0 , t 0 ) d t 0 + ∭ V [ G ψ ( r 0 ) − ϕ ( r 0 ) ∂ G ∂ t 0 ] ∣ t 0 = 0 d V 0 + a 2 ∫ 0 t d t 0 ∬ Σ [ G ∂ u ( r 0 , t 0 ) ∂ n 0 − u ( r 0 , t 0 ) ∂ G ∂ n 0 ] d S 0 (5.4) \begin{aligned} u(\mathbf r,t)= & \iiint\limits_V\mathrm dV_0\int_0^{t} Gf(\mathbf r_0,t_0)\mathrm dt_0 \\ & +\iiint\limits_V [G\psi(\mathbf r_0)-\phi(\mathbf r_0)\cfrac{∂G}{∂t_0}]\Big|_{t_0=0}\mathrm dV_0 \\ &+a^2\int_0^{t}\mathrm dt_0\iint\limits_Σ [G\cfrac{∂u(\mathbf r_0,t_0)}{∂n_0}-u(\mathbf r_0,t_0)\cfrac{∂G}{∂n_0}]\mathrm dS_0 \end{aligned}\tag{5.4} u(r,t)=VdV00tGf(r0,t0)dt0+V[Gψ(r0)ϕ(r0)t0G]t0=0dV0+a20tdt0Σ[Gn0u(r0,t0)u(r0,t0)n0G]dS0(5.4)
对于不同类型的边界条件条件,可令 G G G 满足相应的齐次边界条件,从而得到适用于不同边界条件的解以 G G G 表示的解的积分表达式。

热传导方程定解问题
{ u t − a 2 Δ u = f ( r , t ) ( t > 0 , r ∈ V ) ( α ∂ u ∂ n + β u ) ∣ Σ = σ ( r , t ) ( t > 0 , r ∈ Σ ) u ∣ t = 0 = ϕ ( r ) ( t > 0 , r ∈ V ) (5.5) \begin{cases} u_{t}-a^2Δu=f(\mathbf r,t) & (t>0,\mathbf r\in V) \\ (α\cfrac{∂u}{∂n}+βu)\Big|_{Σ}=σ(\mathbf r,t) & (t>0,\mathbf r\in Σ) \\ u|_{t=0}=\phi(\mathbf r) &(t>0,\mathbf r\in V) \end{cases}\tag{5.5} uta2Δu=f(r,t)(αnu+βu)Σ=σ(r,t)ut=0=ϕ(r)(t>0,rV)(t>0,rΣ)(t>0,rV)(5.5)
格林函数满足的定解问题是
{ G t − a 2 Δ G = δ ( r − r 0 ) δ ( t − t 0 ) ( t , t 0 > 0 , r ∈ V ) ( α ∂ G ∂ n + β G ) ∣ Σ = 0 ( t , t 0 > 0 , r ∈ Σ ) G ∣ t = t 0 = 0 ( t , t 0 > 0 , r ∈ V ) (5.6) \begin{cases} G_{t}-a^2ΔG=δ(\mathbf{r-r_0})δ(t-t_0) & (t,t_0>0,\mathbf r\in V) \\ (α\cfrac{∂G}{∂n}+βG)\Big|_{Σ}=0 & (t,t_0>0,\mathbf r\in Σ) \\ G|_{t=t_0}=0 & (t,t_0>0,\mathbf r\in V) \end{cases}\tag{5.6} Gta2ΔG=δ(rr0)δ(tt0)(αnG+βG)Σ=0Gt=t0=0(t,t0>0,rV)(t,t0>0,rΣ)(t,t0>0,rV)(5.6)
类似上面的讨论,同样可以得到解的积分表达式
u ( r , t ) = ∭ V d V 0 ∫ 0 t G f ( r 0 , t 0 ) d t 0 + ∭ V [ G ϕ ( r 0 ) ] ∣ t 0 = 0 d V 0 + a 2 ∫ 0 t d t 0 ∬ Σ [ G ∂ u ( r 0 , t 0 ) ∂ n 0 − u ( r 0 , t 0 ) ∂ G ∂ n 0 ] d S 0 (5.7) \begin{aligned} u(\mathbf r,t)= & \iiint\limits_V\mathrm dV_0\int_0^{t} Gf(\mathbf r_0,t_0)\mathrm dt_0 \\ & +\iiint\limits_V [G\phi(\mathbf r_0)]\Big|_{t_0=0}\mathrm dV_0 \\ &+a^2\int_0^{t}\mathrm dt_0\iint\limits_Σ [G\cfrac{∂u(\mathbf r_0,t_0)}{∂n_0}-u(\mathbf r_0,t_0)\cfrac{∂G}{∂n_0}]\mathrm dS_0 \end{aligned}\tag{5.7} u(r,t)=VdV00tGf(r0,t0)dt0+V[Gϕ(r0)]t0=0dV0+a20tdt0Σ[Gn0u(r0,t0)u(r0,t0)n0G]dS0(5.7)

格林函数的求法

示例 1:对于一维热传导问题的格林函数
{ G t − a 2 G x x = δ ( x − x 0 ) δ ( t − t 0 ) ( t , t 0 > 0 , 0 < x < l ) G ∣ x = 0 = G ∣ x = l = 0 G ∣ t = t 0 = 0 \begin{cases} G_{t}-a^2G_{xx}=δ(x-x_0)δ(t-t_0) & (t,t_0>0,0<x<l) \\ G|_{x=0}=G|_{x=l}=0 \\ G|_{t=t_0}=0 \end{cases} Gta2Gxx=δ(xx0)δ(tt0)Gx=0=Gx=l=0Gt=t0=0(t,t0>0,0<x<l)
由特征函数展开,分离变量法可求得
G ( x , t ; x 0 , t 0 ) = l 2 ∑ n = 1 ∞ exp ⁡ [ − ( n π a l ) 2 ( t − t 0 ) ] sin ⁡ n π x 0 l sin ⁡ n π x l ( t > t 0 ) G(x,t;x_0,t_0)=\cfrac{l}{2}\sum_{n=1}^{\infty}\exp[-(\cfrac{n\pi a}{l})^2(t-t_0)] \sin\cfrac{n\pi x_0}{l}\sin\cfrac{n\pi x}{l}\quad(t>t_0) G(x,t;x0,t0)=2ln=1exp[(lnπa)2(tt0)]sinlnπx0sinlnπx(t>t0)
示例 2:对于一维受迫振动的格林函数
{ G t − a 2 G x x = δ ( x − x 0 ) δ ( t − t 0 ) ( t , t 0 > 0 , 0 < x < l ) G ∣ x = 0 = G ∣ x = l = 0 G ∣ t = t 0 = 0 , ∂ G ∂ t ∣ t = t 0 = 0 \begin{cases} G_{t}-a^2G_{xx}=δ(x-x_0)δ(t-t_0) & (t,t_0>0,0<x<l) \\ G|_{x=0}=G|_{x=l}=0 \\ G|_{t=t_0}=0,\quad \cfrac{∂G}{∂t}|_{t=t_0}=0 \end{cases} Gta2Gxx=δ(xx0)δ(tt0)Gx=0=Gx=l=0Gt=t0=0,tGt=t0=0(t,t0>0,0<x<l)
由特征函数展开,分离变量法可求得
G ( x , t ; x 0 , t 0 ) = 2 π a ∑ n = 1 ∞ 1 n sin ⁡ n π x 0 l sin ⁡ n π a ( t − t 0 ) l sin ⁡ n π x l ( t > t 0 ) G(x,t;x_0,t_0)=\cfrac{2}{\pi a}\sum_{n=1}^{\infty}\cfrac{1}{n} \sin\cfrac{n\pi x_0}{l}\sin\cfrac{n\pi a(t-t_0)}{l}\sin\cfrac{n\pi x}{l}\quad(t>t_0) G(x,t;x0,t0)=πa2n=1n1sinlnπx0sinlnπa(tt0)sinlnπx(t>t0)

附录

静电场理论

库伦定律
F = 1 4 π ε 0 Q q r 2 e r (1.1) \mathbf F=\cfrac{1}{4πε_0}\cfrac{Qq}{r^2}\mathbf e_r\tag{1.1} F=4πε01r2Qqer(1.1)
电场强度:是用来表示电场的强弱和方向的物理量
E = F q = 1 4 π ε 0 Q r 2 e r (1.2) \mathbf{E}=\cfrac{\mathbf F}{q}=\cfrac{1}{4πε_0}\cfrac{Q}{r^2}\mathbf e_r\tag{1.2} E=qF=4πε01r2Qer(1.2)
高斯定理:穿过闭合曲面 Σ Σ Σ 向外的电场强度通量等于闭合曲面围成的空间 V V V 内电量的 1 / ε 0 1/ε_0 1/ε0,其中 ε 0 ε_0 ε0 为真空介电常数。
∯ Σ E ⋅ d S = 1 ε 0 ∭ V ρ d V (1.3) \oiint\limits_{Σ}\mathbf E\cdot\mathrm d\mathbf S =\cfrac{1}{ε_0}\iiint\limits_{V}\rho\mathrm dV\tag{1.3} Σ EdS=ε01VρdV(1.3)
简要证明:先对点电荷的场证明,再推广到一半的电荷分布。

(1) 取包围点电荷 q q q 的任意闭合曲面 Σ Σ Σ,在闭合曲面上任取面元 d S \mathrm d\mathbf S dS ,由库伦定律计算电通量
d Φ = E ⋅ d S = 1 4 π ε 0 q r 2 d S cos ⁡ θ \mathrm d\Phi=\mathbf E\cdot \mathrm d\mathbf S =\cfrac{1}{4πε_0}\cfrac{q}{r^2}\mathrm dS\cos θ dΦ=EdS=4πε01r2qdScosθ
面元 d S \mathrm d\mathbf S dS 在球面上(以点电荷为球心, r r r 为半径)的投影 d S 0 = d S cos ⁡ θ \mathrm dS_0=\mathrm dS\cos θ dS0=dScosθ ,在此,引入球面立体角3 d Ω = d S 0 r 2 \mathrm dΩ=\cfrac{\mathrm dS_0}{r^2} dΩ=r2dS0 ,然后对上式积分
∯ Σ E ⋅ d S = q 4 π ε 0 ∯ Σ d Ω = q ε 0 \oiint\limits_{Σ}\mathbf E\cdot\mathrm d\mathbf S =\cfrac{q}{4πε_0}\oiint\limits_Σ\mathrm dΩ =\cfrac{q}{ε_0} Σ EdS=4πε0qΣ dΩ=ε0q
(2) 根据场强叠加原理,上式可进一步扩展为
∯ Σ E ⋅ d S = 1 ε 0 ∑ q i  in  V q i \oiint\limits_{Σ}\mathbf E\cdot\mathrm d\mathbf S =\cfrac{1}{ε_0}\sum_{q_i\text{ in }V}q_i Σ EdS=ε01qi in Vqi
若电荷为连续分布,电荷密度为 ρ \rho ρ 则上式可改写为
∯ Σ E ⋅ d S = 1 ε 0 ∭ V ρ d V \oiint\limits_{Σ}\mathbf E\cdot\mathrm d\mathbf S =\cfrac{1}{ε_0}\iiint\limits_{V}\rho\mathrm dV Σ EdS=ε01VρdV
通过数学上的高斯公式,上式左端可化为体积分
∭ V ∇ ⋅ E d V = 1 ε 0 ∭ V ρ d V \iiint\limits_{V}∇\cdot \mathbf E\mathrm{d}V =\cfrac{1}{ε_0}\iiint\limits_{V}\rho\mathrm dV VEdV=ε01VρdV
由于闭合曲面的随意性,取极限 V → M ( x , y , z ) V\to M(x,y,z) VM(x,y,z) 上式可化为微分形式
∇ ⋅ E = ρ ε 0 (1.4) ∇\cdot \mathbf E=\cfrac{\rho}{ε_0}\tag{1.4} E=ε0ρ(1.4)
静电场环路定理: 在静电场中,场强沿任意闭合路径的线积分等于 0
∮ L E ⋅ d l = 0 (1.5) \oint_{L}\mathbf E\cdot\mathrm dl=0\tag{1.5} LEdl=0(1.5)
取点电荷 q q q 的电场
E ⋅ d l = 1 4 π ε 0 q r 2 d l cos ⁡ = 1 4 π ε 0 q r 2 d r \mathbf E\cdot\mathrm dl=\cfrac{1}{4πε_0}\cfrac{q}{r^2}\mathrm dl\cos =\cfrac{1}{4πε_0}\cfrac{q}{r^2}\mathrm dr Edl=4πε01r2qdlcos=4πε01r2qdr
环路积分
∮ L E ⋅ d l = q 4 π ε 0 ∮ L 1 r 2 d r = 0 \oint_{L}\mathbf E\cdot\mathrm dl=\cfrac{q}{4πε_0}\oint_L\cfrac{1}{r^2}\mathrm dr=0 LEdl=4πε0qLr21dr=0
根据场强叠加原理,可推广至多个点电荷及电荷连续分布情形。
根据数学上的斯托克斯公式,上式左端可以化为面积分
∬ S ( ∇ × E ) ⋅ d S = 0 \iint\limits_{S}(∇\times\mathbf E)\cdot\mathrm d\mathbf S=0 S(×E)dS=0
其中 S S S 为以 L L L 为环边界线的任意曲面。取极限 S → M ( x , y , z ) S\to M(x,y,z) SM(x,y,z) 上式可化为微分形式
∇ × E = 0 (1.6) ∇\times\mathbf E=0\tag{1.6} ×E=0(1.6)

电势能和电势:由静电场环路定理知道
∮ L F ⋅ d l = ∮ L q E ⋅ d l = 0 \oint_{L}\mathbf F\cdot\mathrm dl=\oint_{L}q\mathbf E\cdot\mathrm dl=0 LFdl=LqEdl=0
由此可见,电场力做功与路径无关,只和起始和终止位置有关,由此引入势能的概念。
定义:静电场力做功等于相应电势能的减小量
∫ A B F ⋅ d l = W A − W B \int_{A}^{B}\mathbf F\cdot\mathrm dl=W_A-W_B ABFdl=WAWB
做功的大小还和电荷量有关,在此引入电势 φ P = W P q φ_P=\cfrac{W_P}{q} φP=qWP ,电势差与路径无关
∫ A B E ⋅ d l = φ A − φ B \int_{A}^{B}\mathbf E\cdot\mathrm dl=φ_A-φ_B ABEdl=φAφB
取无穷远处为电势零点,可求得点电荷电势场方程为
φ ( r ) = ∫ r ∞ E ⋅ d l = ∫ r ∞ 1 4 π ε 0 Q r 2 d r = Q 4 π ε 0 r φ(\mathbf r)=\int_{r}^{\infty}\mathbf E\cdot\mathrm dl =\int_{r}^{\infty}\cfrac{1}{4πε_0}\cfrac{Q}{r^2}\mathrm dr =\cfrac{Q}{4πε_0r} φ(r)=rEdl=r4πε01r2Qdr=4πε0rQ
根据电场叠加原理进一步推广到电荷连续分布
φ ( r ) = 1 4 π ε 0 r ∭ V ρ ( r ) d V (1.7) φ(\mathbf r)=\cfrac{1}{4πε_0r}\iiint\limits_V\rho(\mathbf r)\mathrm dV\tag{1.7} φ(r)=4πε0r1Vρ(r)dV(1.7)
由电势的定义,相距为 d l \mathrm dl dl 的两点的电势差为
d φ = − E ⋅ d l \mathrm dφ=-\mathbf E\cdot\mathrm dl dφ=Edl
由于
d φ = ∂ φ ∂ x d x + ∂ φ ∂ y d y + ∂ φ ∂ z d z = ∇ φ ⋅ d l \mathrm dφ=\dfrac{∂φ}{∂x}\mathrm dx+\dfrac{∂φ}{∂y}\mathrm dy+\dfrac{∂φ}{∂z}\mathrm dz =∇φ\cdot\mathrm dl dφ=xφdx+yφdy+zφdz=φdl
所以电场强度和电势的关系为
E = − ∇ φ (1.8) \mathbf E=-∇φ\tag{1.8} E=φ(1.8)
带入 ( 1.4 ) (1.4) (1.4) 可得
Δ φ = − ρ ε 0 (1.9) Δφ=-\cfrac{\rho}{ε_0}\tag{1.9} Δφ=ε0ρ(1.9)
这就是电势函数应当满足的静电场方程, E \mathbf E E 是矢量,而 φ φ φ 是标量,求解标量方程相对简单些。

格林公式

高斯公式:(Gauss formula) 设空间闭区域 V V V 由分片光滑的闭曲面 Σ Σ Σ 所围成,函数 P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) P(x,y,z), Q(x,y,z), R(x,y,z) P(x,y,z),Q(x,y,z),R(x,y,z) V V V 上有连续的一阶偏导数,则有
∭ V ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d V = ∯ Σ P d y d z + Q d x d z + R d x d y = ∯ Σ ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ ) d S \begin{aligned} \iiint\limits_{V}(\dfrac{∂P}{∂x}+\dfrac{∂Q}{∂y}+\dfrac{∂R}{∂z})\mathrm{d}V &=\oiint\limits_{Σ}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}x\mathrm{d}z+R\mathrm{d}x\mathrm{d}y \\ &=\oiint\limits_{Σ}(P\cosα+Q\cosβ+R\cosγ) \mathrm{d}S \end{aligned} V(xP+yQ+zR)dV=Σ Pdydz+Qdxdz+Rdxdy=Σ (Pcosα+Qcosβ+Rcosγ)dS
曲面 Σ Σ Σ 的方向取外侧, cos ⁡ α , cos ⁡ β , cos ⁡ γ \cosα,\cosβ,\cosγ cosα,cosβ,cosγ 为曲面 Σ Σ Σ 在点 ( x , y , z ) (x,y,z) (x,y,z) 处外法线的方向余弦4
高斯公式向量形式为
∭ V ∇ ⋅ A d V = ∯ Σ A ⋅ d S = ∯ Σ A ⋅ n d S \iiint\limits_{V}∇\cdot \mathbf A\mathrm{d}V =\oiint\limits_{Σ}\mathbf A\cdot \mathrm{d}\mathbf S =\oiint\limits_{Σ}\mathbf A\cdot \mathbf n \mathrm{d}S VAdV=Σ AdS=Σ AndS
其中 A = ( P , Q , R ) \mathbf A=(P,Q,R) A=(P,Q,R) n = ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) \mathbf n=(\cosα,\cosβ,\cosγ) n=(cosα,cosβ,cosγ) 为曲面 Σ Σ Σ 单位法向量, d S = n d S = d y d z i + d x d z j + d x d y k \mathrm{d}\mathbf S=\mathbf n\mathrm{d}S=\mathrm{d}y\mathrm{d}z\mathbf i+\mathrm{d}x\mathrm{d}z\mathbf j+\mathrm{d}x\mathrm{d}y\mathbf k dS=ndS=dydzi+dxdzj+dxdyk 为单位元。

格林公式 :设函数 u ( x , y , z ) , v ( x , y , z ) u(x,y,z), v(x,y,z) u(x,y,z),v(x,y,z) 在空间闭区域 V V V 及边界 Σ Σ Σ 上有一阶连续偏导数,在边界 Σ Σ Σ 上有二阶连续偏导数 。利用高斯公式可得到
∭ V ∇ ⋅ ( u ∇ v ) d V = ∬ Σ u ∇ v ⋅ d S \iiint\limits_{V}∇\cdot \mathbf (u∇v)\mathrm{d}V =\iint\limits_{Σ} u∇v\cdot \mathrm{d}\mathbf S V(uv)dV=ΣuvdS
于是我们得到第一格林公式
∬ Σ u ∇ v ⋅ d S = ∭ V u Δ v d V + ∭ V ∇ u ⋅ ∇ v d V \iint\limits_{Σ} u∇v\cdot \mathrm{d}\mathbf S= \iiint\limits_{V}uΔv\mathrm{d}V+\iiint\limits_{V}∇u\cdot ∇v\mathrm{d}V ΣuvdS=VuΔvdV+VuvdV
同理我们可以得到
∬ Σ v ∇ u ⋅ d S = ∭ V v Δ u d V + ∭ V ∇ v ⋅ ∇ u d V \iint\limits_{Σ} v∇u\cdot \mathrm{d}\mathbf S= \iiint\limits_{V}vΔu\mathrm{d}V+\iiint\limits_{V}∇v\cdot ∇u\mathrm{d}V ΣvudS=VvΔudV+VvudV
两式相减可得到
∭ V ( u Δ v − v Δ u ) d V = ∬ Σ ( u ∇ v − v ∇ u ) ⋅ d S = ∬ Σ ( u ∂ v ∂ n − v ∂ u ∂ n ) d S \iiint\limits_{V}(uΔv-vΔu)\mathrm{d}V=\iint\limits_{Σ} (u∇v-v∇u)\cdot \mathrm{d}\mathbf S =\iint\limits_{Σ} (u\cfrac{∂v}{∂n}-v\cfrac{∂u}{∂n})\mathrm{d}S V(uΔvvΔu)dV=Σ(uvvu)dS=Σ(unvvnu)dS
其中 ∂ ∂ n \cfrac{∂}{∂n} n 表示沿边界 Σ Σ Σ 外法线的方向导数。上式称为第二格林公式,简称格林公式。

调和函数的边界性质:设函数 u ( r ) u(\mathbf r) u(r) 是区域 V V V 内的调和函数,则有
∬ ∂ V ∂ v ∂ n d S = 0 \iint\limits_{∂V}\cfrac{∂v}{∂n}\mathrm dS=0 VnvdS=0
证明:在第二格林公式中取 u ( r ) u(\mathbf r) u(r) 为调和函数,即满足 Δ u = 0 Δu=0 Δu=0 ,取 v = 1 v=1 v=1 ,即得上式。

调和函数的均值定理:设区域 V V V 是以 r 0 \mathbf r_0 r0 为球心 a a a 为半径的球,函数 u ( r ) u(\mathbf r) u(r) V V V 内的调和函数,则
u ( r 0 ) = 1 4 π a 2 ∬ ∂ V u ( r ) d S u(\mathbf r_0)=\cfrac{1}{4\pi a^2}\iint\limits_{∂V}u(\mathbf r)\mathrm dS u(r0)=4πa21Vu(r)dS

证明:已知调和函数 u ( r ) u(\mathbf r) u(r) 满足
Δ u ( r ) = 0 Δu(\mathbf r)=0 Δu(r)=0
取函数 v ( r ) = 1 ∣ r − r 0 ∣ = 1 r v(\mathbf r)=\cfrac{1}{|\mathbf{r-r_0}|}=\cfrac{1}{r} v(r)=rr01=r1 ,如图,利用多维 δ δ δ 函数的性质得到
Δ v ( r ) = − 4 π δ ( r − r 0 ) Δv(\mathbf r)=-4\piδ(\mathbf{r-r_0}) Δv(r)=4πδ(rr0)
将上述两方程分别乘以 v ( r ) , u ( r ) v(\mathbf r),u(\mathbf r) v(r),u(r) ,并相减,在体积 V V V 内积分
∭ V ( u Δ v − v Δ u ) d V = − 4 π ∭ V u ( r ) δ ( r − r 0 ) = − 4 π u ( r 0 ) \iiint\limits_{V}(uΔv-vΔu)\mathrm{d}V =-4\pi\iiint\limits_{V}u(\mathbf r)δ(\mathbf{r-r_0}) =-4\pi u(\mathbf r_0) V(uΔvvΔu)dV=4πVu(r)δ(rr0)=4πu(r0)
利用第二格林公式得到
u ( r 0 ) = 1 4 π ∬ ∂ V [ v ( r ) ∂ u ( r ) ∂ n − u ( r ) ∂ v ( r ) ∂ n ] d S u(\mathbf r_0)=\cfrac{1}{4\pi} \iint\limits_{∂V}[v(\mathbf r)\cfrac{∂u(\mathbf r)}{∂n} -u(\mathbf r)\cfrac{∂v(\mathbf r)}{∂n}]\mathrm{d}S u(r0)=4π1V[v(r)nu(r)u(r)nv(r)]dS
因为在球面 ∂ V ∂V V 上,外法线 n \mathbf n n 的方向与 r r r 所在半径的方向一致,所以球面上
∂ v ( r ) ∂ n = ∂ ∂ n ( 1 r ) = ∂ ∂ r ( 1 r ) = − 1 r 2 \cfrac{∂v(\mathbf r)}{∂n}=\cfrac{∂}{∂n}(\cfrac{1}{r}) =\cfrac{∂}{∂r}(\cfrac{1}{r})=-\cfrac{1}{r^2} nv(r)=n(r1)=r(r1)=r21
又因为调和函数带入格林公式
∭ V Δ u d V = ∬ ∂ V ∂ u ∂ n d S = 0 \iiint\limits_{V}Δu\mathrm dV=\iint\limits_{∂V}\cfrac{∂u}{∂n}\mathrm dS=0 VΔudV=VnudS=0
于是最终得到
u ( r 0 ) = 1 4 π a 2 ∬ ∂ V u ( r ) d S u(\mathbf r_0)=\cfrac{1}{4\pi a^2}\iint\limits_{∂V}u(\mathbf r)\mathrm{d}S u(r0)=4πa21Vu(r)dS
调和函数的极值原理:设函数 u ( r ) u(\mathbf r) u(r) 是区域 V V V 内的调和函数,则 u ( r ) u(\mathbf r) u(r) 必在 V V V 的边界面上取得最大值最小值。
证明:结合均值定理,可用反证法证明。

δ δ δ 函数简介

δ δ δ 函数起源于集中分布物理量的描述。
对于连续分布的物理量 Q Q Q ,通常有两种描述方式,一种是局部性的,给出密度分布函数
ρ ( r ) = d Q d r \rho(\mathbf r)=\cfrac{\mathrm dQ}{\mathrm d\mathbf r} ρ(r)=drdQ
另一种是整体性的
Q = ∫ V ρ ( r ) d r Q=\int_V\rho(\mathbf r)\mathrm d\mathbf r Q=Vρ(r)dr
对于集中分布的物理量同样有两种方式描述。

δ δ δ 函数:(点电荷的线密度) 设在直线 L L L 上,仅在 x = 0 x=0 x=0 处有一单位电荷,可以看成单位电荷分布在 [ − ε , ε ] [-ε,ε] [ε,ε] 上当 ε → 0 ε\to0 ε0 的极限情况,后者密度可表示为
ρ ε ( x ) = { 1 2 ε ( ∣ x ∣ ⩽ ε ) 0 ( ∣ x ∣ > ε ) \rho_ε(x)=\begin{cases} \cfrac{1}{2ε}&(|x|⩽ε) \\ 0&(|x|>ε) \end{cases} ρε(x)=2ε10(xε)(x>ε)
且对任意 ε > 0 ε>0 ε>0 直线上的电荷总量为
Q = ∫ − ∞ + ∞ ρ ε ( x ) d x = 1 Q=\int_{-\infty}^{+\infty}\rho_ε(x)\mathrm dx=1 Q=+ρε(x)dx=1
ε → 0 ε\to0 ε0 可由 ρ ε ( x ) \rho_ε(x) ρε(x) 的极限推得单位点电荷的分布
ρ ( x ) = { ∞ ( x = 0 ) 0 ( x ≠ 0 ) \rho(x)=\begin{cases} ∞ &(x=0) \\ 0&(x\neq 0) \end{cases} ρ(x)={0(x=0)(x=0)
且保持直线上的电荷总量为 1。
对于集中于 x = 0 x=0 x=0 点的单位物理量引起的密度函数叫做 δ δ δ 函数, δ ( x ) δ(x) δ(x) 满足条件
δ ( x ) = { ∞ ( x = 0 ) 0 ( x ≠ 0 ) δ(x)=\begin{cases} ∞ &(x=0) \\ 0&(x\neq 0) \end{cases} δ(x)={0(x=0)(x=0)

∫ − ∞ + ∞ δ ( x ) d x = 1 \int_{-∞}^{+∞}δ(x)\mathrm dx=1 +δ(x)dx=1
注意
(1) δ δ δ 函数并不是经典意义下的函数,因此通常称其为广义函数(或者奇异函数)。
(2) 它不能用常规意义下的值的对应关系来理解和使用,而总是通过它的定义和性质来使用它。
(3) δ δ δ 函数还有其他多种定义方式。

δ δ δ 函数的平移:对于集中于 x = x 0 x=x_0 x=x0 点的单位物理量引起的密度函数, δ δ δ 函数平移满足
δ ( x − x 0 ) = { ∞ ( x = x 0 ) 0 ( x ≠ x 0 ) δ(x-x_0)=\begin{cases}∞ &(x=x_0) \\0&(x\neq x_0) \end{cases} δ(xx0)={0(x=x0)(x=x0)

∫ − ∞ + ∞ δ ( x − x 0 ) d x = 1 \int_{-∞}^{+∞}δ(x-x_0)\mathrm dx=1 +δ(xx0)dx=1
筛选性质
∫ a b δ ( x ) f ( x ) d x = { f ( 0 ) 0 ∈ [ a , b ] 0 0 ∉ [ a , b ] \int_a^bδ(x)f(x)dx=\begin{cases} f(0) & 0\in[a,b] \\ 0 & 0\not\in[a,b]\end{cases} abδ(x)f(x)dx={f(0)00[a,b]0[a,b]
特别的
∫ − ∞ + ∞ δ ( t ) f ( t ) d t = f ( 0 ) \int_{-∞}^{+∞}δ(t)f(t)dt=f(0) +δ(t)f(t)dt=f(0)
也可以把上述性质作为 δ δ δ 函数的另一种定义,此时我们对 δ δ δ 函数有了全新的认识,它实际上是一种映射,把元素 f ( x ) f(x) f(x) 映射成了一个数 f ( 0 ) f(0) f(0)

性质和运算

(1) δ ( x ) δ(x) δ(x) 和常数 c c c 的乘积 c δ ( x ) cδ(x) cδ(x)
∫ − ∞ + ∞ [ c δ ( x ) ] f ( x ) d x = ∫ − ∞ + ∞ δ ( x ) [ c f ( x ) ] d x = c f ( 0 ) \int_{-∞}^{+∞}[cδ(x)]f(x)dx=\int_{-∞}^{+∞}δ(x)[cf(x)]dx=cf(0) +[cδ(x)]f(x)dx=+δ(x)[cf(x)]dx=cf(0)
(2) 筛选性质
∫ − ∞ + ∞ δ ( x − x 0 ) f ( x ) d x = f ( x 0 ) \int_{-∞}^{+∞}δ(x-x_0)f(x)dx=f(x_0) +δ(xx0)f(x)dx=f(x0)
(3) 对称性
δ ( x − x 0 ) = δ ( x 0 − x ) δ(x-x_0)=δ(x_0-x) δ(xx0)=δ(x0x)
特别的
δ ( x ) = δ ( − x ) δ(x)=δ(-x) δ(x)=δ(x)
(4) 与连续分布函数 f ( x ) f(x) f(x) 的乘积
∫ − ∞ + ∞ f ( x ) δ ( x − x 0 ) = ∫ − ∞ + ∞ f ( x 0 ) δ ( x − x 0 ) \int_{-∞}^{+∞}f(x)δ(x-x_0)=\int_{-∞}^{+∞}f(x_0)δ(x-x_0) +f(x)δ(xx0)=+f(x0)δ(xx0)

f ( x ) δ ( x − x 0 ) = f ( x 0 ) δ ( x − x 0 ) f(x)δ(x-x_0)=f(x_0)δ(x-x_0) f(x)δ(xx0)=f(x0)δ(xx0)
(5) δ δ δ 函数的导数 δ ′ ( x ) δ'(x) δ(x),对于在 x = 0 x=0 x=0 点连续并有连续导数的任意函数 f ( x ) f(x) f(x) ,应用分部积分
∫ − ∞ + ∞ δ ′ ( x ) f ( x ) d x = δ ( x ) f ( x ) ∣ − ∞ + ∞ − ∫ − ∞ + ∞ δ ( x ) f ′ ( x ) d x = − f ′ ( 0 ) \int_{-∞}^{+∞}δ'(x)f(x)dx=δ(x)f(x)\Big|_{-∞}^{+∞}-\int_{-∞}^{+∞}δ(x)f'(x)dx=-f'(0) +δ(x)f(x)dx=δ(x)f(x)++δ(x)f(x)dx=f(0)
对于 δ δ δ 函数的高阶导数 δ ( n ) ( x ) δ^{(n)}(x) δ(n)(x) ,对于在 t = 0 t=0 t=0 点连续并有连续导数的任意函数 f ( x ) f(x) f(x) ,有
∫ − ∞ + ∞ δ ( n ) ( x ) f ( x ) d x = ( − 1 ) n f ( n ) ( 0 ) \int_{-∞}^{+∞}δ^{(n)}(x)f(x)dx=(-1)^{n}f^{(n)}(0) +δ(n)(x)f(x)dx=(1)nf(n)(0)
(6) δ δ δ 函数是单位阶跃函数的导数
d H ( x ) d x = δ ( x ) \dfrac{\mathrm dH(x)}{\mathrm dx}=δ(x) dxdH(x)=δ(x)
δ δ δ 函数的原函数为单位阶跃函数
H ( x ) = { 0 ( x < 0 ) 1 ( x > 0 ) = ∫ − ∞ x δ ( s ) d s H(x)=\begin{cases}0 & (x<0) \\ 1 &(x>0) \end{cases}= \int_{-∞}^{x}δ(s)ds H(x)={01(x<0)(x>0)=xδ(s)ds
单位阶跃函数

(7) δ δ δ 函数的卷积
δ ( x ) ∗ f ( x ) = f ( x ) δ ′ ( x ) ∗ f ( x ) = δ ( x ) ∗ f ′ ( x ) = f ′ ( x ) L [ f ∗ g ] = L [ f ] ∗ g = f ∗ L [ g ] δ(x)*f(x)=f(x) \\ δ'(x)*f(x)=δ(x)*f'(x)=f'(x) \\ L[f*g]=L[f]*g=f*L[g] δ(x)f(x)=f(x)δ(x)f(x)=δ(x)f(x)=f(x)L[fg]=L[f]g=fL[g]

(8) 连续分布的质量、电荷或持续作用的力也可以用 δ δ δ 函数表示。现在以从 t = a t=a t=a 持续作用到 t = b t=b t=b 的作用力 f ( t ) f(t) f(t) 为例说明。将时间段 [ a , b ] [a,b] [a,b] 分成许多小段,在某个 τ \tau τ τ + d τ \tau+d\tau τ+dτ 的短时间上,力 f ( t ) f(t) f(t) 的冲量为 f ( τ ) d τ f(\tau)d\tau f(τ)dτ ,既然 d τ d\tau dτ 很短,不妨将这段时间的力看成是瞬时力,记作 f ( τ ) δ ( t − τ ) d τ f(\tau)δ(t-\tau)d\tau f(τ)δ(tτ)dτ ,这样许许多多瞬时力的总和就是持续力 f ( t ) f(t) f(t) ,即
f ( t ) = ∑ f ( τ ) δ ( t − τ ) d τ = ∫ a b f ( τ ) δ ( t − τ ) d τ f(t)=\sum f(\tau)δ(t-\tau)d\tau=\int_a^b f(\tau)δ(t-\tau)d\tau f(t)=f(τ)δ(tτ)dτ=abf(τ)δ(tτ)dτ

δ函数的Fourier 变换
(1) 根据 δ δ δ 函数筛选性质可得
F ( ω ) = F [ δ ( t ) ] = ∫ − ∞ + ∞ δ ( t ) e − i ω t d t = e − i ω t ∣ t = 0 = 1 δ ( t ) = F − 1 [ 1 ] = 1 2 π ∫ − ∞ + ∞ e i ω t d ω F(ω)=\mathcal{F}[δ(t)]=\int^{+∞}_{-∞}δ(t)e^{-iω t}\text{d}t=e^{-iω t}|_{t=0}=1 \\ δ(t)=\mathcal{F}^{-1}[1]=\dfrac{1}{2\pi}\int_{-∞}^{+∞}e^{iω t}\text{d}ω F(ω)=F[δ(t)]=+δ(t)eiωtdt=eiωtt=0=1δ(t)=F1[1]=2π1+eiωtdω
或写为
δ ( t ) = 1 2 π ∫ − ∞ + ∞ cos ⁡ ω t d ω = 1 π ∫ 0 + ∞ cos ⁡ ω t d ω δ(t)=\dfrac{1}{2\pi}\int_{-∞}^{+∞}\cosω t\text{d}ω =\dfrac{1}{\pi}\int_{0}^{+∞}\cosω t\text{d}ω δ(t)=2π1+cosωtdω=π10+cosωtdω
由此可见,δ函数包含所有频率成份,且它们具有相等的幅度,称此为均匀频谱或白色频谱。
我们可以得到 :
δ ( t ) ↔ 1 δ ( t − t 0 ) ↔ e − i ω t 0 1 ↔ 2 π δ ( ω ) e − i ω 0 t ↔ 2 π δ ( ω − ω 0 ) t ↔ 2 π i δ ′ ( ω ) cos ⁡ ( ω 0 t ) = π [ δ ( ω + ω 0 ) + δ ( ω − ω 0 ) ] sin ⁡ ( ω 0 t ) = i π [ δ ( ω + ω 0 ) − δ ( ω − ω 0 ) ] \begin{aligned}& δ(t) \lrarr 1 \\& δ(t-t_0)\lrarr e^{-iω t_0} \\& 1 \lrarr 2\pi δ(ω) \\& e^{-iω_0 t} \lrarr 2\pi δ(ω − ω_0) \\& t\lrarr 2\pi iδ'(ω) \\& \cos(ω_0t)=\pi[δ(ω + ω_0)+δ(ω − ω_0)] \\& \sin(ω_0t)=i\pi[δ(ω + ω_0)-δ(ω − ω_0)]\end{aligned} δ(t)1δ(tt0)eiωt012πδ(ω)eiω0t2πδ(ωω0)t2πiδ(ω)cos(ω0t)=π[δ(ω+ω0)+δ(ωω0)]sin(ω0t)=iπ[δ(ω+ω0)δ(ωω0)]
(2) 有许多重要的函数不满足Fourier 积分定理条件(绝对可积),例如常数、符号函数、单位阶跃函数、正弦函数和余弦函数等,但它们的广义Fourier 变换5也是存在的,利用δ函数及其Fourier 变换可以求出它们的Fourier 变换。

δ函数的Fourier 展开:当 x , x 0 ∈ ( − π , π ) x,x_0\in(-\pi,\pi) x,x0(π,π)
δ ( x − x 0 ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) δ(x-x_0)=\cfrac{a_0}{2}+\sum_{n=1}^{\infty}(a_n\cos nx+b_n\sin nx) δ(xx0)=2a0+n=1(ancosnx+bnsinnx)
其中傅里叶系数
{ a n = 1 π ∫ − π π δ ( x − x 0 ) cos ⁡ n x d x = 1 π cos ⁡ n x 0 b n = 1 π ∫ − π π δ ( x − x 0 ) sin ⁡ n x d x = 1 π sin ⁡ n x 0 \begin{cases}\displaystyle a_n=\cfrac{1}{\pi}\int_{-\pi}^{\pi}δ(x-x_0)\cos nxdx=\cfrac{1}{\pi}\cos nx_0 \\ \displaystyle b_n=\cfrac{1}{\pi}\int_{-\pi}^{\pi}δ(x-x_0)\sin nxdx =\cfrac{1}{\pi}\sin nx_0 \end{cases} an=π1ππδ(xx0)cosnxdx=π1cosnx0bn=π1ππδ(xx0)sinnxdx=π1sinnx0
多维 δ δ δ 函数:例如位于三维空间的坐标原点质量为 m m m 的质点,其密度函数可表示为 m δ ( r ) mδ(\mathbf r) mδ(r)。 在三维空间中的 δ δ δ 函数定义如下:
δ ( r ) = { 0 ( r ≠ 0 ) ∞ ( r = 0 ) ∭ − ∞ + ∞ δ ( r ) d r = 1 δ(\mathbf r)= \begin{cases} 0 &(\mathbf r\neq0) \\ \infty &(\mathbf r=0) \end{cases} \\ \iiint\limits_{-\infty}^{+\infty} δ(\mathbf r)\mathrm d\mathbf r=1 δ(r)={0(r=0)(r=0)+δ(r)dr=1

(1) 三维 δ δ δ 函数可表示为三个一维 δ δ δ 函数乘积表示,在直角坐标系中
δ ( r ) = δ ( x ) δ ( y ) δ ( z ) δ(\mathbf r)=δ(x)δ(y)δ(z) δ(r)=δ(x)δ(y)δ(z)
三维空间点 r 0 = ( x 0 , y 0 , z 0 ) \mathbf r_0=(x_0,y_0,z_0) r0=(x0,y0,z0) 处密度分布函数就是
δ ( r − r 0 ) = δ ( x − x 0 ) δ ( y − y 0 ) δ ( z − z 0 ) δ(\mathbf{r-r_0})=δ(x-x_0)δ(y-y_0)δ(z-z_0) δ(rr0)=δ(xx0)δ(yy0)δ(zz0)
(2) 变量代换:当
{ x = x ( ξ , η , ζ ) y = y ( ξ , η , ζ ) z = z ( ξ , η , ζ ) \begin{cases}x=x(ξ,η,ζ) \\y=y(ξ,η,ζ) \\z=z(ξ,η,ζ) \\\end{cases} x=x(ξ,η,ζ)y=y(ξ,η,ζ)z=z(ξ,η,ζ)
时有
δ ( x − x 0 , y − y 0 , z − z 0 ) = 1 ∣ J ∣ δ ( ξ − ξ 0 , η − η 0 , ζ − ζ 0 ) δ(x-x_0,y-y_0,z-z_0)=\cfrac{1}{|J|}δ(ξ-ξ_0,η-η_0,ζ-ζ_0) δ(xx0,yy0,zz0)=J1δ(ξξ0,ηη0,ζζ0)
其中 ∣ J ∣ ≠ 0 |J|\neq0 J=0 是 Jacobi 行列式的绝对值, ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0) ( ξ 0 , η 0 , ζ 0 ) (ξ_0,η_0,ζ_0) (ξ0,η0,ζ0) 相对应。
直角坐标系换算到柱坐标系 r = ( r , θ , z ) \mathbf r=(r,θ,z) r=(r,θ,z)
δ ( r − r 0 ) = 1 r 0 δ ( r − r 0 ) δ ( θ − θ 0 ) δ ( z − z 0 ) δ(\mathbf{r-r_0})=\frac{1}{r_0}δ(r-r_0)δ(θ-θ_0)δ(z-z_0) δ(rr0)=r01δ(rr0)δ(θθ0)δ(zz0)
直角坐标系换算到球坐标系 r = ( r , θ , ϕ ) \mathbf r=(r,θ,ϕ) r=(r,θ,ϕ)
δ ( r − r 0 ) = 1 r 0 2 sin ⁡ θ 0 δ ( r − r 0 ) δ ( θ − θ 0 ) δ ( ϕ − ϕ 0 ) δ(\mathbf{r-r_0})=\frac{1}{r_0^2\sinθ_0}δ(r-r_0)δ(θ-θ_0)δ(ϕ-ϕ_0) δ(rr0)=r02sinθ01δ(rr0)δ(θθ0)δ(ϕϕ0)
(3) 筛选性质
∭ − ∞ + ∞ f ( r ) δ ( r − r 0 ) d r = f ( r 0 ) ∭ − ∞ + ∞ f ( r ) [ ∇ δ ( r − r 0 ) ] d r = − ∇ f ( r ) ∣ r = r 0 \iiint\limits_{-\infty}^{+\infty} f(\mathbf r)δ(\mathbf{r-r_0})\mathrm d\mathbf r=f(\mathbf r_0) \\\iiint\limits_{-\infty}^{+\infty} f(\mathbf r)[\nablaδ(\mathbf{r-r_0})]\mathrm d\mathbf r=-\nabla f(\mathbf r)|_{\mathbf{r=r_0}} +f(r)δ(rr0)dr=f(r0)+f(r)[δ(rr0)]dr=f(r)r=r0
位矢的微分:
Δ 1 r = − 4 π δ ( r ) \Delta \frac{1}{r}=-4\piδ(\mathbf r) Δr1=4πδ(r)
其中 r = x 2 + y 2 + z 2 r=\sqrt{x^2+y^2+z^2} r=x2+y2+z2

(4) 混合偏导:
∂ 3 H ( x , y , z ) ∂ x ∂ y ∂ z = δ ( x , y , z ) \dfrac{∂^3H(x,y,z)}{∂x∂y∂z}=δ(x,y,z) xyz3H(x,y,z)=δ(x,y,z)
其中 H ( x , y , z ) = H ( x ) H ( y ) H ( z ) H(x,y,z)=H(x)H(y)H(z) H(x,y,z)=H(x)H(y)H(z) 为单位阶跃函数

(5) 多重傅里叶变换
δ ( x , y , z ) ↔ 1 1 ↔ ( 2 π ) 3 δ ( λ , μ , ν ) x ↔ ( 2 π ) 3 i ∂ δ ( λ , μ , ν ) ∂ λ x 2 + y 2 + z 2 ↔ ( 2 π ) 3 δ ( λ , μ , ν ) e i a x ↔ ( 2 π ) 3 δ ( λ − a , μ , ν ) δ(x,y,z) \lrarr 1 \\1 \lrarr (2\pi)^3δ(λ,μ,ν) \\x \lrarr (2\pi)^3i\cfrac{∂δ(λ,μ,ν)}{∂λ} \\x^2+y^2+z^2 \lrarr (2\pi)^3δ(λ,μ,ν) \\e^{iax} \lrarr (2\pi)^3δ(λ-a,μ,ν) δ(x,y,z)11(2π)3δ(λ,μ,ν)x(2π)3iλδ(λ,μ,ν)x2+y2+z2(2π)3δ(λ,μ,ν)eiax(2π)3δ(λa,μ,ν)
(6) 多重卷积定义
f ∗ g = ∭ − ∞ + ∞ f ( r ) g ( r − r 0 ) d r 0 f*g=\iiint\limits_{-\infty}^{+\infty} f(\mathbf r)g(\mathbf{r-r_0})\mathrm d\mathbf r_0 fg=+f(r)g(rr0)dr0
性质如下
δ ∗ f = f ∂ δ ∂ x ∗ f = δ ∗ ∂ f ∂ x = ∂ f ∂ x ∂ ∂ x ( f ∗ g ) = ∂ f ∂ x ∗ g = f ∗ ∂ g ∂ x L [ f ∗ g ] = L [ f ] ∗ g = f ∗ L [ g ] F ( f ∗ g ) = F ( f ) ⋅ F ( g ) δ*f=f \\\cfrac{∂δ}{∂x}*f=δ*\cfrac{∂f}{∂x}=\cfrac{∂f}{∂x} \\\cfrac{∂}{∂x}(f*g)=\cfrac{∂f}{∂x}*g=f*\cfrac{∂g}{∂x} \\L[f*g]=L[f]*g=f*L[g] \\\mathcal F(f*g)=\mathcal F(f)\cdot\mathcal F(g) δf=fxδf=δxf=xfx(fg)=xfg=fxgL[fg]=L[f]g=fL[g]F(fg)=F(f)F(g)


  1. 若函数 f ( x ) f(x) f(x) 在区间 D D D 上满足:
    (1) 连续或只有有限个第一类间断点;
    (2) 只有有限个极值点
    则称函数 f ( x ) f(x) f(x) 在区间 D D D上满足狄利克雷(Dirichlet)条件 ↩︎ ↩︎

  2. 这里要用到拉普拉斯变换得到的两个公式
    ∫ 0 + ∞ sin ⁡ k x k d k = π 2 ∫ 0 + ∞ sin ⁡ k x k e − k 2 a 2 t d k = π ∫ 0 x / 2 a t e − ξ 2 d ξ \int_0^{+\infty}\frac{\sin kx}{k}dk=\frac{\pi}{2} \\ \int_0^{+\infty}\frac{\sin kx}{k}e^{-k^2a^2t}dk= \sqrt{\pi}\int_0^{x/2a\sqrt{t}}e^{-\xi^2}d\xi 0+ksinkxdk=2π0+ksinkxek2a2tdk=π 0x/2at eξ2dξ ↩︎

  3. 立体角:常用字母 Ω Ω Ω 表示。以观测点为球心,构造一个单位球面;任意物体投影到该单位球面上的投影面积,即为该物体相对于该观测点的立体角。 因此,立体角是单位球面上的一块面积,这和“平面角是单位圆上的一段弧长”类似。
    立体角的国际制单位是球面度 (steradian , sr)
    在球坐标系中,任意球面的极小面积为:
    d A = ( r sin ⁡ θ d ϕ ) ⋅ ( r d θ ) = r 2 sin ⁡ θ d θ d ϕ \mathrm dA=(r\sinθ\mathrm dϕ)\cdot(r\mathrm dθ)=r^2\sinθ\mathrm dθ\mathrm dϕ dA=(rsinθdϕ)(rdθ)=r2sinθdθdϕ
    因此,极小立体角(单位球面上的极小面积)为:
    d Ω = d A r 2 = sin ⁡ θ d θ d ϕ \mathrm dΩ=\cfrac{\mathrm dA}{r^2}=\sinθ\mathrm dθ\mathrm dϕ dΩ=r2dA=sinθdθdϕ
    所以,立体角是投影面积与球半径平方值的比,这和“平面角是圆的弧长与半径的比”类似。 对极小立体角做曲面积分即可得立体角
    Ω = ∬ S d Ω = ∬ S sin ⁡ θ d θ d ϕ Ω=\iint\limits_S\mathrm dΩ=\iint\limits_S\sinθ\mathrm dθ\mathrm dϕ Ω=SdΩ=Ssinθdθdϕ
    一个完整的球面对于球内任意一点的立体角为 4 π 4π 4π, 这个定理对所有封闭曲面皆成立。
    ∯ S d Ω = ∯ S sin ⁡ θ d θ d ϕ = ∫ 0 π sin ⁡ θ d θ ∫ 0 2 π d ϕ = 4 π \oiint\limits_S\mathrm dΩ=\oiint\limits_S\sinθ\mathrm dθ\mathrm dϕ =\int_0^{\pi}\sinθ\mathrm dθ\int_0^{2\pi}\mathrm dϕ=4\pi S dΩ=S sinθdθdϕ=0πsinθdθ02πdϕ=4π ↩︎

  4. 方向向量与坐标轴的夹角 α , β , γ α,β,γ α,β,γ 称为方向角, cos ⁡ α , cos ⁡ β , cos ⁡ γ \cosα,\cosβ,\cosγ cosα,cosβ,cosγ 称为方向向量的方向余弦。 ↩︎

  5. 在δ函数的Fourier变换中,其广义积分是根据δ函数的性质直接给出的,而不是按通常的积分方式得到的,称这种方式的Fourier 变换为广义Fourier 变换↩︎

  • 1
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值