高斯反向投影
在图像处理中,我们通常需要设置感兴趣的区域(ROI,region of interest),来简化我们的工作。也就是从图像中选择的一个图像区域,这个区域是我们图像分析所关注的重点。
在上一篇文章图像相似度比较和检测图像中的特定物中,我们使用直方图反向投影的方式来获取ROI,在这里我们采用另一种方式高斯反向投影。它通过基于高斯的概率密度函数(PDF)进行估算,反向投影得到对象区域,该方法可以看成是最简单的图像分割方法。
随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:X∼N(μ,σ2), 则其概率密度函数为
其中,正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。
算法实现
-
输入模型M,对M的每个像素点(R,G,B)计算SUM=R+G+B r=R/SUM, g=G/SUM, b=B/SUM
-
根据得到权重比例值,计算得到对应的均值 与标准方差
-
对输入图像的每个像素点计算根据高斯公式计算P(r)与P(g)的乘积
-
归一化之后输出结果,显示基于高斯分布概率密度函数的反向投影图像。
GaussianBackProjection的算法实现:
import com.cv4j.core.datamodel.ByteProcessor;
import com.cv4j.core.datamodel.ImageProcessor;
import com.cv4j.exception.CV4JException;
import com.cv4j.image.util.Tools;
public class GaussianBackProjection {
public void backProjection(ImageProcessor src, ImageProcessor model, ByteProcessor dst) {
if(src.getChannels() == 1 || model.getChannels() == 1) {
throw new CV4JException("did not support image type : single-channel...");
}
float[] R = model.toFloat(0);
float[] G = model.toFloat(1);
int r = 0, g = 0, b = 0;
float sum = 0;