高斯反向投影实现检测图像中的特定物

本文介绍了高斯反向投影在图像处理中的作用,作为检测图像中特定物的一种方法。通过基于高斯概率密度函数的反向投影,可以得到对象区域,实现简单的图像分割。算法实现包括计算像素权重比例、均值和标准方差,然后使用高斯公式计算反向投影图像。文章还提到了一个纯Java图像处理库cv4j及其开发者,并预告了接下来将开发模板匹配功能。
摘要由CSDN通过智能技术生成



高斯反向投影

在图像处理中,我们通常需要设置感兴趣的区域(ROI,region of interest),来简化我们的工作。也就是从图像中选择的一个图像区域,这个区域是我们图像分析所关注的重点。

在上一篇文章图像相似度比较和检测图像中的特定物中,我们使用直方图反向投影的方式来获取ROI,在这里我们采用另一种方式高斯反向投影。它通过基于高斯的概率密度函数(PDF)进行估算,反向投影得到对象区域,该方法可以看成是最简单的图像分割方法。

随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:XN(μ,σ2), 则其概率密度函数为

其中,正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。

算法实现

  1. 输入模型M,对M的每个像素点(R,G,B)计算SUM=R+G+B r=R/SUM, g=G/SUM, b=B/SUM

  2. 根据得到权重比例值,计算得到对应的均值 与标准方差

  3. 对输入图像的每个像素点计算根据高斯公式计算P(r)与P(g)的乘积

  4. 归一化之后输出结果,显示基于高斯分布概率密度函数的反向投影图像。


GaussianBackProjection的算法实现:

  
  
  
  1. import com.cv4j.core.datamodel.ByteProcessor;

  2. import com.cv4j.core.datamodel.ImageProcessor;

  3. import com.cv4j.exception.CV4JException;

  4. import com.cv4j.image.util.Tools;

  5. public class GaussianBackProjection {

  6.    public void backProjection(ImageProcessor src, ImageProcessor model, ByteProcessor dst) {

  7.        if(src.getChannels() == 1 || model.getChannels() == 1) {

  8.            throw new CV4JException("did not support image type : single-channel...");

  9.        }

  10.        float[] R = model.toFloat(0);

  11.        float[] G = model.toFloat(1);

  12.        int r = 0, g = 0, b = 0;

  13.        float sum = 0;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值