回溯法-5.5.1 n皇后问题之递归法

问题描述:在n×n格的棋盘上放置彼此不受攻击的n个皇后,即任意两个皇后互不攻击。按国际象棋的规则,皇后可以攻击与之处在同一列或同一行或同一斜线的棋子。
1
4皇后解空间如下:
2
任意两个皇后不能在同一列或同一行或同一斜线上,如图所示:
3

代码如下:

public class test5_5_1 {
    static int n;    //皇后个数
    static int[] x;  //当前解
    static long sum; //当前已找到的可行方案数
    private static void nQueen1(int nn){
        n = nn;
        sum = 0;
        x = new int[n+1];
        for(int i=0;i<=n;i++) x[i] = 0;
        backtrack(1);
    }
    private static boolean place(int t){
        //不能和之前的皇后同在一条斜率=±1斜线上,也不能在同一列上
        for(int i=1;i<t;i++){  //t表示行下标,x[t]表示列下标
            if(Math.abs(t-i)==Math.abs(x[t]-x[i])||x[t]==x[i]) return false;
        }
        return true;
    }
    private static void backtrack(int t){
        if(t>n) sum++;
        else{
            //i∈[1:n],可抽象成此节点下第i个分支,也表示n×n矩阵中第i列
            for(int i=1;i<=n;i++){  //在第t行下扫描n列
                x[t] = i;  //第t行,第i列
                if(place(t)) backtrack(t+1);  //若符合要求,则向下一层节点探索
            }
        }
    }
    public static void main(String[] args) {
        n = 8;
        nQueen1(n);
        System.out.println(n+"个皇后共有:"+sum+"种解");
    }
}

运行结果如下:

4个皇后共有:2种解
8个皇后共有:92种解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SL_World

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值