摘要
本节为课后习题讲解,重点阐述了原始计数法向阿拉伯数字系统的转化过程。通过讲解如何将刻痕图化简为阿拉伯数字,强调了进制、位置和符号的思想在数字系统中的重要性。视频还探讨了如何将数字拆解回原始刻痕图,并介绍了用字母代替数字进行计数的方法。此外,还提到了零的发明意义及在技术系统中的作用,并预告了下节课将重点阐述零的重要性。本节旨在帮助学生深入理解数字系统的原理,提高数学思维能力。
原始计数法的化简
1.原始计数法是最基本的计数方式,通过刻痕来表示数量,但这种方式不便于处理大量和复杂的计数。
2.化简过程包括进制思想、位置思想和符号思想,最终将原始刻痕图转化为阿拉伯数字。
3.进制思想:通过打包小刻痕成箱子,使用十进制进行计数。
4.位置思想:按照指定位置放置箱子和刻痕,区分十位和个位。
5.符号思想:使用一到九的符号来表示刻痕和箱子。
我们就直接开始第一题,请你完成下面这个原始计数的化简。这个化简大家知道这是一个什么过程吗?是把我们这种最原始的刻痕啊,这个是所有人都能看懂,但是非常不方便的,这么一种计数法。要最终化简成为什么呢?化简成为我们现在最常用的阿拉伯数字。好,我们看这个跨界课程该怎么样进行啊?
这个呢,是一个最原始的刻痕,那我现在就想啊,首先它的数量特别多,我们运用第一种思想叫什么来着,大家还记得吗?打包,然后用我们数字系统的说法,那就叫做进制。我需要把这些特别没有规则很多的东西,通过一些整理的方式把它打包成一个一个高级的。呃,小箱子叫做我们在阿拉伯数字里用的是十进制对吧?所以我现在要数啊,每十个给它打一个包。二三四五六七八九十好,这边呢,可以打一个包。我们继续一二三四五六七八九十好,我又数了十个。这边呢,又可以打一个包。继续一二三四五六七八九十好,这边又有十个。继续打一个包,然后呢?我现在就变成了看啊,有几个包啊,有三个包。然后呢,还额外剩余两个小刻痕,因为不够十嘛,我就没有办法了,就只能这样了,对吧?
后来呢,我们又引进了一种思想。叫做位制。什么意思呢?就是我按照指定的位置,把这两种东西放在不同的抽屉里,我们上节课举例子了,比如说右边第一个抽屉呢。它的外面的标签写的刻痕,左边第二个呃往左这个抽屉呢,它就是专门放我们这个小箱子。一旦我们这样在外面做好标记之后呢,我们就不需要再画这么多的箱子了,对吧?这边就是三个箱子。然后这边呢,就是两道刻痕,所以就好了,而一旦后面我们熟悉了之后呢,我这些外围的东西也都可以给它删掉。只留下最终的这个三道杠,跟右边的这个两道杠。
然后我们最后引入了一种东西,叫做符号。就是从一到九的那九种符号,我去查一下那个原始符号表,就会发现三道杠用哪个东西来表示呢?就是这个。两道杠用什么东西来表示呢?就是这个。
所以啊,我们最终就把这么一幅非常乱的图啊简化成了。这么一个东西。这就是我们现在用的阿拉伯数字系统,所以中间会有几个特殊的思想,一个是进制思想。一个是位制的思想,最后一个是我们这个符号的思想,希望大家把这个过程一定要搞清楚。好,第一题呢?到这里我们就解释完毕了。
数字拆解为原始刻痕图
1.反向过程将阿拉伯数字拆解为原始刻痕图,理解数字的底层表示。
2.通过十位和个位的刻痕数量,还原出原始的刻痕图。
3.例子:15拆解为一道杠(箱子)和五道杠(刻痕),67拆解为六道杠(箱子)和七道杠(刻痕)。
4.验证方法:通过数刻痕的数量,确保拆解正确。