摘要
主要讲述了高年级方法专题课程的延迟原因、适用对象及首节内容。课程因方法思想难提炼而推迟,适合五年级下册或六年级以上学生。首节介绍归纳法,强调其作为解决复杂问题的基本方法,通过案例总结规律并推广应用。归纳法源于生活,依赖案例数量和质量,影响归纳规律的准确性。
课程介绍及道歉
1.课程延迟原因:方法专题课程编写难度较大,需要较强的抽取能力来归纳整理复杂体系中的内容。
2.目标受众:适合高年级同学,特别是五年级下册或六年级同学,因为核心方法在复杂题目中才能体现优势。
归纳法概述
1.归纳法定义:通过一定数量的案例尝试总结出规律,并推广应用于解决新问题。
2.归纳法在小学阶段通常称为找规律。
3.归纳法的思想源于生活,例如通过观察总结出每天早晨天会亮的规律。
归纳法的局限性
1.局限性:归纳法只能从有限案例中提取规律,不能保证未来是否会遇到特殊情况。
2.哲学角度:不能保证未来依然遵循规律。
3.小学阶段:一般认为事物发展符合规律,因此归纳法用得比较多。
数学中的归纳法
1.找规律问题:小学数学中常见的题型,通过提取规律解决未知问题。
2.数字规律问题:通过观察数字的变化找出规律,如等差数列。
3.图形规律问题:通过观察图形的变化找出规律,如旋转方向和格数。
复杂规律问题
1.多维度规律问题:涉及多个维度的规律,如颜色、形状和大小的变化。
2.图形与数字组合问题:结合图形和数字的规律进行找规律。
3.复杂运算规律问题:涉及加减乘除混合运算的规律问题。
找规律的基本步骤
1.观察力:细心观察案例,找出规律。
2.多维度提取特征:尽可能提取出所有的规律。
3.验证规律:通过重复验证确保规律的正确性。
找规律问题的考法
1.小数点后的周期判定问题:通过找周期规律确定小数点后第39位的数字。
2.用字母表示数列问题:通过找规律确定第n个图的点的数量。
小数点后的周期判定问题
1.问题背景:求八除以七的小数点后第39位的数字。
2.解题步骤:通过小数除法找出循环节,确定第39位的数字。
3.关键点:找到循环节和周期,计算余数确定位置。
用字母表示数列问题
1.问题背景:求第n个图的点的数量。
2.解题步骤:通过找规律确定点的数量公式,计算第99个图的点的数量。
3.关键点:找到规律并验证,确定公式中的常数。
今天我们要开的这个课程啊,叫做高年级的一个方法专题。主要是讲一些。啊,但是一直拖了很久,它的原因在于呢,这课啊确实比较难编写,因为我们之前的课程呢。知识点啊,是在课本里有明确的章节,它也有一个知识体系啊,是比较好进行归纳整理的,但这个。方法跟思想呢,说实话啊,是需要一个比较强的,这个抽取能力才可以把这些东西从复杂的体系中抽取出来,让给大家讲清楚。所以第一个呢,就是一个小小的,抱歉啊,确实花了很长时间。呃,第二个呢?需要给大家来说明的是啊,这课程呢是比较适合高年级的同学来听。为什么我解释一下原因啊?因为原本呢,我们是想利用一些,就是稍微低层次些的问题,把这些方法讲清楚的。所以呢,起初是要安排在中年级左右给大家讲,但后来我们发现啊,有一些核心方法,它的优势必须在一些比较高级复杂的题目里才能体现出来。如果只用低年级的一些简单问题来讲的话呃,虽然也能讲,但是呢,你可能学一个公式,或者学一个套路,反而更容易就解决了。只有当你遇到的问题比较复杂,比较高级,这个核心方法它才能体现出它的优势出来,因为它是一个可以解决所有问题的。基本方法对吧?所以呢,综上啊呃,给大家来说明一下这课程呢,你最好到五年级下册,或者是到六年级以后再来听。这样呢,你可能能够吸收的更好啊,里面讲到的一些知识啊,一些题型,你可能对于高年级同学来讲就不是特别的难了。
好吧,那么就正正式开始了啊,今天我们来讲方法专题的第一节课叫做归纳法啊,我前面列的这些方法啊,前几节课的方法是比较核心的。所以可能一节课讲不完,会有可能延伸到两节课后面的一些辅助方法啊,那可能就一节课给大家讲完了。好,今天先讲一下归纳。什么叫做归纳呢?归纳法不是一个题啊,也不是一个知识点,它是我们的方法,工具箱里的。
一种方法,什么叫做方法工具箱啊呃,其实我们这整个课程就是在说我们在小学。数学里啊,在解决问题的这些策略中,常用的一些标准方法,这些方法呢,虽然听起来比较虚啊,比如说我们今天讲归纳。可能下一次讲枚举,那再下一次讲什么列表画图这些东西啊,都很虚,但它确实啊,组合应用的好,是可以帮助你解决很多没有见过的。
比较复杂的问题的啊,什么叫做归纳法呢?我们一步一步来啊,归纳按一句话来说就是,你要通过一定数量的案例,尝试总结出一种规律出来。然后呢,再把这个规律啊,再推广去使用,比如说可以解决一些新的问题,这个归纳啊。在小学阶段,就是通常我们所说的叫做找规律,对吧?找规律,大家小学都接触过一些问题吧。我们后面呢,会由难由简单到难给大家通过一些案例来讲讲归纳,在具体问题里的应用方法。不过先不说题啊,先说一说归纳思想。
其实归纳法不是在数学里产生的啊,它是在我们的生活里非常自然,就产生了我举一个例子啊,明天早晨天会亮。那这个大家都是知道的,关键是啊,你是怎么知道的?即便没有人告诉你,没有任何书说明这件事情,其实你经过一定的生活阅历啊,你也都能总结出这么一个规律。因为你每天早晨都看到天会亮,每天都会亮,时间过了长了之后啊,你自然在脑子中就归纳出了一个规律出来,因为人脑有一定的自动归纳的能力啊。然后呢,你就归纳出明天天会亮,同时啊,你就能够推演出,比如说呃,将来的。所有天它的早晨啊,天也都会亮了,你看这不是又一个归纳的基本的小演示啊,像这些也是啊,比如说明年会有饭吃。或者明天会有饭吃,那这个对于大家目前来讲,因为大家都是小学生,年龄都是十来岁,对吧?十来岁以内啊,你们可能在成长的经历中没有经历过挨饿的这么一种体验,所以呢,你在出生之后所有的时间里都会有一种感觉哎。我从来想吃饭的时候都不会说没饭吃,因此你会归纳出一个规律,就是随时这个饭啊,都是充足的,这么一个规律。所以呢,不管是明天还是明年,你都有非常强的自信,感觉一定会有饭吃的,但是如果你把这件事情问你爷爷或者奶奶。他们小时候可能会经历过一些挨饿的经历啊,也就是说他们经历的这些事件啊。比你的这个时间要长,所以说啊,他们有可能归纳出的规律,就跟你可能不太一样。所以呢,归纳的规律是什么?其实取决于前面给我们的这些案例啊,这些案例。要足够多,才能够体现出一个东西的规律,如果你只经历过一年或者是两年或者是三年。次数比较少,那这个规