摘要
本节为数学课程讲解,重点围绕数轴、数的分类及简便运算进行深入解析。首先介绍了数轴的概念及其重要性,并通过数轴解释了加减法的另一种理解方式,即加法相当于向右走,减法相当于向左走。接着讲解了数的分类,包括整数与非整数、正负数以及质数与合数的概念和判定方法。通过具体例题,详细阐述了分类讨论思想在解决复杂数学问题中的应用。最后,介绍了快速判定一个数能否被二、三、五整除的方法,以及哥德巴赫猜想等相关数学知识,并提供了判断奇偶性、质数与合数的实用技巧。整个视频内容丰富,既巩固了基础知识,又拓展了数学思维。
数轴的概念和特性
1.数轴是一条直线,最左边是零,右边是自然数。
2.数轴能够反映出加减操作中无法体现的特性。
3.加法在数轴上表示为向右走,减法表示为向左走。
4.通过数轴,加法可以理解为一种运动。
数轴在加减法中的应用
1.通过数轴,可以解释所有加减混合运算。
2.二减五在数轴上表示为从二往左走五格。
3.当结果为负数时,可以继续往左走,引入负数概念。
4.负数在数轴上表示为零左边的点。
负数的引入和生活应用
1.负数表示零左边的数,可以扩展加减法的概念。
2.负数在生活中有实际应用,如电梯的负一楼、负二楼,气温计的负度数。
数轴在加减法中的扩展
1.引入数轴后,加减法可以变成其他描述方式。
2.通过数轴,可以理解加减法的不同含义。
数轴在加减法中的应用题
1.通过数轴解决加减法应用题,理解数的运动。
2.例题:小明在数轴上14这个点,每秒钟往左走两格,问五秒和十秒后的位置。
3.通过数轴和加减法运算,计算小明在数轴上的位置。
分类讨论思想在数轴中的应用
1.分类讨论思想在解决复杂问题时非常重要。
2.例题:在数轴上找一个点到点一和点五的距离相等,且到点一的距离是到点五的距离的三倍。
3.通过分类讨论,找出符合条件的点。
数的分类方法
1.整数和非整数的分类:整数在整点上,非整数在缝隙里。
2.正负数的分类:正数在零的右边,负数在零的左边,零既不是正数也不是负数。
3.按照是否在整点上分类:整数包括正整数、负整数和零,非整数包括小数和分数。
奇偶数的定义和判定
1.偶数:能被二整除的整数。
2.奇数:不能被二整除的整数。
3.奇偶数的图形解释:偶数成双,奇数成单。
4.奇偶数的数轴解释:偶数跨两格,奇数跨一格。
5.奇偶数的运算规律:偶加偶、偶减偶、偶乘偶结果为偶;奇加奇、奇减奇结果为偶;偶乘奇结果为偶;奇乘奇结果为奇。
质数和合数的定义及判定
1.质数:除了一和它本身以外,不再有其他因数的数。
2.合数:除了一和它本身以外,还有其他因数的数。
3.质数的判定方法:看是否只能写成一种形式。
4.合数的判定方法:看是否可以写成多种形式。
5.100以内的质数表:二、三、五、七、十一、十三、十五、十七、十九、二十一、二十三、二十五、二十七、二十九、三十一、三十三、三十五、三十七、三十九、四十一、四十三、四十七、四十九、五十三、五十九、六十一、六十七、七十一、七十三、七十九、八十三、八十九、九十七。
快速判定一个数能否被二三五整除的方法
1.被二整除:看个位是否为零或偶数。
2.被五整除:看个位是否为零或五。
3.被三整除:看每个位上的数字之和是否为三的倍数。
今天呢,给大家来复习一下,我们第四节课的内容啊,数轴数的分类和简便运算。我们呃,非常快的把这节课的内容给大家简单过一遍啊好。首先来看数轴这个概念啊,数轴这个概念呢,是我们在小学高年级慢慢就要涉及到的一种。呃,对于树的这个心理模型啊,为什么要有竖轴呢?其实它数轴这个东西能够反映出很多,我们在原来的那种加减操作中所反映不出来的一些特性。
嗯,我们先把数轴给大家讲一下是什么东西,数轴就是这么一个东西是一条线。然后呢?最左边是零。一二三四五六七,这就是我们通常小学一开始学的自然数啊,我们就是把自然数呢,按照从左到右的这么一个顺序,排在一条整齐的线上。这就叫做数轴了,你可能觉得数轴是非常简单的一个东西,对吧?为什么要有它呢?原因是一旦有了数轴啊,
就像我刚才说的,我们能够对原来的一些基本运算有了另一个层次的理解。举一个最简单的例子加法。加法呢,原来我们怎么理解的?我们都是把合并对吧?把两堆东西,比如说一堆东西有这么多,一堆东西有这么多。然后把它合并到一起,问有多少呢?这个用加法来计算。但是一旦有了数轴啊,我们对加法有了第二种含义,它相当于是一种运动,加法相当于向右边走在数轴上啊,因为数轴一条线嘛,加法相当于向右走,减法相当于向左走。什么意思啊?通过一个例子给大家讲一下,比如说二+5=7。在数轴上表示它是什么意思呢?二我从二这个点开始走。加五是什么意思呢?往右走五格大家看啊,一格两格三格四格。五格走到了哪个点上呢?七所以二+5=7在数轴上,相当于是从二。往右边走,五格走到了七这个点,你看同样一种加法,运算不同的人,用不同的模型可以理解为完全不同的过程。所以以后我们在高年级做题的时候,你会发现哎,好像完全不同的题啊,但是最后做出来它们的式子完全一样。那这时候很多小朋友就就就犯难了,为什么呢?因为他们对于算式的理解太单一了,他只知道。两个球加五个球。
是二+5=7,却不知道在数轴上乱动,也可以做成二+5=7,这就会导致它某些题目做不出来。所以希望大家能够在呃我们学习数学的过程中啊,尽量能用不?那就是不同的,而且尽可能多的模型去解释同一个式子,换句话说,你对于同一个式子的理解,尽可能要非常多样化才行。那二加七是这个意思,比如说它反过来七减五等于二对吧?这个我们之前都会做七减五等于二,什么意思呢?就是从七这个点减嘛,往左走五下一二三四五。恰好走到二这个点,所以七减五等于二,它还可以表示混合运算啊,比如说七减。四+2等于几呢?我们来算算啊,七先往左走四格一。一二三四走到这里,对吧?再往右走,两格一二应该停在五。五我们看它是不是等于五啊七减四等于三三加二等于五确实等于五,所以这种方法确实可以解释一切加减混合运算。都可以在数轴上通过走来走出来。那通过引入数轴,还有另一个好处,就是它可以扩展我们对于加减法的概念。原来我们在加减法的时候都会遇到这种问题,会很疑惑,二减五等于几呀?貌似没法减啊,你如果问低年级的同学二减五等于几,他可能觉得你题出错对吧,但是一旦我们有了数轴。就不太难理解这个东西了,二减五的意义很明确,从二往左走五格。一格两格诶。
这才走两格呢,可是我已经到了最左边零了,这貌似是一个终点啊。那接下来该怎么办呢?这个时候数学界就会有两种呃观点,第一种观点是。这个式子不行,不能这么写,不成立,因为零就是最左边的东西了,不能再往前走。所以第一种数学家就认为这个式子有问题,不能写,而第二种数学家,他的思想就比较开放。他可能这么说,谁规定的零左边就不能走呢?我把这道门打开,继续往左走就是了,虽然我现在不知道是什么,但是我往那边去看看呀。看看,说不定就知道叫什么了,对吧?所以他们这些人认为还可以继续往左走。那二减五是什么意思呢?从二往左走,一格两格三格四格五格应该走到这个地方。可是这个地方叫什么呢?一开始人是不知道的,直到后来。看,这就是我们那个第二种数学家的想法,它从零又往左走了三个。那但是一开始我们不知道它叫什么,也不知道它的具体含义是什么意思,直到后来人们在生活中慢慢体会到了它的含义。它是什么意思呢?我们后来给给左边的这些数也命名了零的,左边第一个就叫负一,左边第二格就叫负二。左边第三格就叫负三,第四格就叫负四,你看它跟我们右边的这些数都是对称的。所以零啊变成了一个中间的点。
右边呢,都是正的,一二三四越来越多,左边呢,都是负的,负一负二负三负四越来越少。所以通过这个呃小数轴啊,我们就引入了一种新的数的概念叫做。复数这概念呢,在大家上五年级之后,第一课就会学了。好,这是我们通过数轴啊,把正负数给它引出来,你可能会问这个数字在生活里有用吗?
或者说我们在生活里能见到这种负的数吗?大家可以想一想有没有?其实是有的,其实是有的啊,比如说在哪里呢?在电梯,电梯。一楼下面是不是还有啊?什么负一楼负二楼,这就相当于地下室了,对吧?比如说还有什么地方呢?还有我们的温度计。我说的不是那种测体温的水银温度计啊,那种温度计呢,不会有负值,因为你发烧总不可能发成0度或者负1度吧,那就直接。那就直接变成冰棍了,对吧?呃,我说的这种温度计是测量气温的,测量天气的那种温度计,它这边呢会有0度,然后上面有1度两度,但是它下面还有啊。负1度负2度,我们在通常报天气预报的时候也会有负的度数,对吧?比如说徐州这边最冷的可能有零下负12度。你们看天气预报的时候会看到的啊,比如说如果再往北京或者东北东北那边可能会更冷啊,或者零下20度。零下30度可能都有可能,所以这个数字在生活中也会慢慢的用到它,是有实际的含义的。好,我们看看啊,通过引入一个数轴之后哦,原来的加减法可以变成一些其他的描述方式。希望大家能够看得懂啊,不能说我说三个球加两个球你会做,但是从三往右边走两格你就不会了。呃,这个显然是不行,
所以我们来看这一题啊。
小明在数轴上14这个点画一个数轴啊。14这个点每秒钟羊往左走两格。问,五秒的时候,它站在哪里?十秒的时