【零基础入门学习Python笔记002】用Python设计第一个游戏:课后测试集答案

测试题

0.什么是BIF?

BIF就是Built-in-Function,内置函数。为了方便程序员快速编写脚本程序(脚本就是要编程速度快快快!!!),Python提供了非常丰富的内置函数,我们只需要直接调用即可,例如print()的功能就是“打印到屏幕”,input()的作用是接收用户输入(注:Python3用input()取代Python2的raw_input())


1.用课堂上小甲鱼教的方法数一数Python3提高了多少个BIF?

在Python或IDLE中,输入dir(_builtins_)可以看到Python提高的内置方法列表(注意:builtins前后是两个下划线)其中小写的就是BIF。如果想具体查看某个NIF的功能,比如input(),可以在shell中输入help(input),就会得到这个BIF的功能描述。答案就是68个。

 

2.在Python看来:'Fishc'和‘fishc’一样吗?

不一样,因为Python是一个”敏感的小女孩“,所以不要试图欺骗她,对Python来说,fishc和Fishc是完全不同的两个名字,所以编程的时候一定要当心。不过Python会帮助解决可能因此出现的问题,例如只有当标识符已经赋值后(还记得吗,小甲鱼在课程上说过Python的变量是不用声明的)才能在代码中使用,未赋值的标识符直接使用会导致运行时错误,所以你很快就可以根据经验发现此问题。


3,在小甲鱼看来,Python中什么是最重要的?你赞同吗?

缩进!在小甲鱼看来,缩进是Python的灵魂,缩进的严格要求使得Python的代码显得非常精简并且有层次(小甲鱼阅读过很多大牛的代码,那个乱。。。。。c语言不是有国际乱码大赛嘛。。。。。)。


所以在Python里对待缩进代码十分小心,如果没有正确地缩进,代码所做的事情可能和你的期望相去甚远(就像c语言里边的括号打错了位置)。


如果在正确的位置输入冒号”:“,IDLE会自动将下一行缩进。


4.这节课的例子中出现了”=“和”==“,他们表示不同的含义,你在编程的过程中会不小心把”==“误写成”=“吗?有没有好的办法解决这个问题呢?

C语言的话,如果if(c==1)写成if(c=1),程序完全不会按程序员原本的目的去执行,但是Python这里,不好意思,行不通,语法错误!Python不允许if条件中赋值,所以if c=1 :会报错!


小甲鱼觉得这种做法非常有效的防止程序员因为打炮、熬夜等问题导致粗心的BUG,并且这类BUG杀伤力度巨大!


5.你听说过”拼接“这个词吗?

在一些编程语言,我们可以将两个字符串”相加“在一起,如:‘I’+‘Love’+'FishC'会得到‘I love FishC’,在Python里,这种做法叫做拼接字符串。


动动手

0.编写程序:hello.py,要求用户输入姓名并打印”你好,姓名“

name=input("请输入您的姓名:")

print(‘你好,’+name+'!')


1.编写程序:calc.py要求用户输入1到100之间数字并判断,输入符合要求打印”你妹好漂亮“,不符合要求则打印”你大爷好丑“

temp=input("请输入1到100之间的数字:")

num=int(temp)

if 1<=num<=100:

    print('你妹好漂亮')

else:

   print('你大爷好丑')

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
很高兴为您解答这个问题!本次我们将学习如何用 Python 实现《机器学习》周志华教授第十四章中的概率图模型习题。在这里,我们将使用 Python 的 pgmpy 库来构建和分析概率图模型。 首先,我们需要安装 pgmpy。可以使用 pip 安装: ```python pip install pgmpy ``` 安装完成后,我们就可以开始实现习题了。 #### 习题 14.1 考虑一个三元组 $(X, Y, Z)$,其中 $X$ 是二元随机变量,$Y, Z$ 是一元随机变量,试构造一个无向图结构,使其成为正态分布的一个合法图模型。 我们可以使用 pgmpy 来创建这个无向图模型。代码如下: ```python from pgmpy.models import MarkovModel # 创建一个空的无向图模型 model = MarkovModel() # 添加变量节点 model.add_nodes_from(['X', 'Y', 'Z']) # 添加边 model.add_edges_from([('X', 'Y'), ('X', 'Z')]) # 将模型转换成正态分布模型 from pgmpy.factors.continuous import ContinuousFactor from pgmpy.inference import Inference # 定义正态分布的 mean 和 covariance mean = [0, 0, 0] covariance = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] # 创建正态分布因子 factor = ContinuousFactor(['X', 'Y', 'Z'], mean, covariance) # 将因子添加到模型中 model.add_factors(factor) # 执行因子分解 inference = Inference(model) factors = inference.factors() ``` 在上面的代码中,我们首先创建了一个空的无向图模型,然后添加了三个变量节点 $X, Y, Z$ 和两条边 $(X, Y), (X, Z)$。接着,我们使用 `pgmpy.factors.continuous.ContinuousFactor` 来定义正态分布的 mean 和 covariance,并将其添加到模型中。最后,我们使用 `pgmpy.inference.Inference` 来执行因子分解,得到了模型中的所有因子。 #### 习题 14.2 考虑一个四元组 $(X_1, X_2, X_3, X_4)$,它们之间的关系如下图所示。试构造这个有向图结构的贝叶斯网模型。 ![image.png](attachment:image.png) 我们可以使用 pgmpy 来创建这个有向图模型。代码如下: ```python from pgmpy.models import BayesianModel # 创建一个空的有向图模型 model = BayesianModel() # 添加变量节点 model.add_nodes_from(['X1', 'X2', 'X3', 'X4']) # 添加边 model.add_edges_from([('X2', 'X1'), ('X3', 'X1'), ('X3', 'X2'), ('X4', 'X2')]) # 打印模型结构 print(model.edges()) ``` 在上面的代码中,我们首先创建了一个空的有向图模型,然后添加了四个变量节点 $X_1, X_2, X_3, X_4$ 和四条边 $(X_2, X_1), (X_3, X_1), (X_3, X_2), (X_4, X_2)$。最后,我们打印出了模型的边结构。 #### 习题 14.3 考虑一个五元组 $(X_1, X_2, X_3, X_4, X_5)$,它们之间的关系如下图所示。试构造这个有向图结构的贝叶斯网模型。 ![image-2.png](attachment:image-2.png) 我们可以使用 pgmpy 来创建这个有向图模型。代码如下: ```python from pgmpy.models import BayesianModel # 创建一个空的有向图模型 model = BayesianModel() # 添加变量节点 model.add_nodes_from(['X1', 'X2', 'X3', 'X4', 'X5']) # 添加边 model.add_edges_from([('X2', 'X1'), ('X3', 'X1'), ('X4', 'X2'), ('X5', 'X2'), ('X5', 'X3')]) # 打印模型结构 print(model.edges()) ``` 在上面的代码中,我们首先创建了一个空的有向图模型,然后添加了五个变量节点 $X_1, X_2, X_3, X_4, X_5$ 和五条边 $(X_2, X_1), (X_3, X_1), (X_4, X_2), (X_5, X_2), (X_5, X_3)$。最后,我们打印出了模型的边结构。 #### 习题 14.4 考虑一个六元组 $(X_1, X_2, X_3, X_4, X_5, X_6)$,它们之间的关系如下图所示。试构造这个有向图结构的贝叶斯网模型。 ![image-3.png](attachment:image-3.png) 我们可以使用 pgmpy 来创建这个有向图模型。代码如下: ```python from pgmpy.models import BayesianModel # 创建一个空的有向图模型 model = BayesianModel() # 添加变量节点 model.add_nodes_from(['X1', 'X2', 'X3', 'X4', 'X5', 'X6']) # 添加边 model.add_edges_from([('X2', 'X1'), ('X3', 'X1'), ('X4', 'X2'), ('X5', 'X3'), ('X6', 'X4'), ('X6', 'X5')]) # 打印模型结构 print(model.edges()) ``` 在上面的代码中,我们首先创建了一个空的有向图模型,然后添加了六个变量节点 $X_1, X_2, X_3, X_4, X_5, X_6$ 和六条边 $(X_2, X_1), (X_3, X_1), (X_4, X_2), (X_5, X_3), (X_6, X_4), (X_6, X_5)$。最后,我们打印出了模型的边结构。 #### 习题 14.5 考虑一个二元组 $(X, Y)$,其中 $X$ 是一元随机变量,$Y$ 是二元随机变量,试构造一个有向图结构,使其成为正态分布的一个合法图模型。 我们可以使用 pgmpy 来创建这个有向图模型。代码如下: ```python from pgmpy.models import BayesianModel # 创建一个空的有向图模型 model = BayesianModel() # 添加变量节点 model.add_nodes_from(['X', 'Y1', 'Y2']) # 添加边 model.add_edges_from([('X', 'Y1'), ('X', 'Y2')]) # 将模型转换成正态分布模型 from pgmpy.factors.continuous import ContinuousFactor from pgmpy.inference import Inference # 定义正态分布的 mean 和 covariance mean = [0, 0, 0] covariance = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] # 创建正态分布因子 factor = ContinuousFactor(['X', 'Y1', 'Y2'], mean, covariance) # 将因子添加到模型中 model.add_factors(factor) # 执行因子分解 inference = Inference(model) factors = inference.factors() ``` 在上面的代码中,我们首先创建了一个空的有向图模型,然后添加了三个变量节点 $X, Y_1, Y_2$ 和两条边 $(X, Y_1), (X, Y_2)$。接着,我们使用 `pgmpy.factors.continuous.ContinuousFactor` 来定义正态分布的 mean 和 covariance,并将其添加到模型中。最后,我们使用 `pgmpy.inference.Inference` 来执行因子分解,得到了模型中的所有因子。 以上就是本次的答案,希望对您有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值