最小费用最大流--uva1658 Admiral

给定有向图,起点和终点。起点有2艘船,分别沿不同的路,走到终点,不仅路径不能重合,除起点终点,不能经过相同的点。(即结点容量为1)

求2条路径的最小费用。

1.结点容量问题可以用拆点法。

将点i边成i和i’,i和i‘之间连接一条容量为1,费用为0的路径即可。

2.只求2条路径。

所以不能直接while(bellmanford()) ;这样会找到所有增广路径,求出最大流下的最小费用。

但是这题只需要流量为2时的最小费用,所以for(int i = 0;i < 2;i ++) belmanford();找2次即可。

并且源头的流量a[s] = 1,各路径的容量也设为1好了。


#include <iostream>

#include <cstdio>

#include <vector>

#include <queue>

#include <cstring>

using namespace std;

const int maxn = 2000 + 5;

const int INF = 1 << 30;

typedef long long ll;


struct edge{

    int u,v,flow,cap,cost;

};

struct MCMF{

    int n,m;

    vector<edge> es;

    vector<int> mp[maxn];

    int a[maxn];

    int p[maxn];

    bool inq[maxn];

    int d[maxn];

    

    void init(int n){

        this->n = n;

        es.clear();

        for(int i = 1;i <= n;i ++) mp[i].clear();

    }

    void addedge(int u,int v,int cap,int cost){

        es.push_back({u,v,0,cap,cost});

        es.push_back({v,u,0,0,-cost});

        m = es.size();

        mp[u].push_back(m - 2);

        mp[v].push_back(m - 1);

    }

   

    bool bellmanford(int s,int t,ll &cost,int &flow)//这里没有判断负环的。当达到最大流时,形成最小割,返回false。此时的费用就是最小的

    {

        memset(inq, 0, sizeof(inq));

        memset(a, 0, sizeof(a));

        for(int i = 0;i < n;i ++) d[i] = INF;

        d[s] = 0;a[s] = 1;p[s] = -1;//不用设置spre

        queue<int> q;

        q.push(s);inq[s] = true;

        while(!q.empty())

        {

            int x = q.front();q.pop();

            inq[x] = false;

            for(int i = 0;i < mp[x].size();i ++)

            {

                edge &e = es[mp[x][i]];

                if(e.cap > e.flow && d[e.v] > d[e.u] + e.cost)

                {

                    d[e.v] = d[e.u] + e.cost;

                    p[e.v] = mp[x][i];

                    a[e.v] = min(a[e.u],e.cap - e.flow);

                    if(!inq[e.v]) { q.push(e.v);inq[e.v] = true;}

                }

            }

        }

        if(d[t] == INF) return false;

        flow += a[t];

        cost += (ll)d[t];

        for(int u = t;u != s; u = es[p[u]].u)

        {

            es[p[u]].flow += a[t];

            es[p[u] ^ 1].flow -= a[t];

        }

        return true;

    }

    int MinCostMaxFlow(int s,int t,ll &cost)//没有判断负环。

    {

        int flow = 0;

        for(int i = 0;i < 2;i ++) bellmanford(s, t, cost, flow);//只用找2条路,所以每次a[s] = 1开始增广,增广2次即可

        return flow;

    }


};

int main()

{

    int n,m;

    while (scanf("%d%d",&n,&m) != EOF) {

        MCMF mcmf;

        mcmf.init(2 * n);

        int s = 1,t = n;

        int u,v,cost;

        for (int i = 0; i < m; i ++) {

            scanf("%d%d%d",&u,&v,&cost);

            if(1 < u && u < n) u += n;

            mcmf.addedge(u,v, 1, cost);//

        }

        for (int i = 2; i < n; i ++) {

            mcmf.addedge(i, i + n, 1, 0);

        }

        ll sum_cost = 0;

        mcmf.MinCostMaxFlow(s, t,sum_cost);

        printf("%lld\n",sum_cost);

    }

    return 0;

}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值