机器学习,朴素贝叶斯分类笔记(例子嘎嘎简单,草履虫都能学会)

机器学习笔记系列

可以从上至下按顺序看喔

朴素贝叶斯

介绍

  • 首先从名字开始解释,朴素贝叶斯中的“朴素”二字突出了这个算法的简易性。朴素贝叶斯的简易性表现该算法基于一个很朴素的假设:所有的变量都是相互独立的,假设各特征之间相互独立。
  • 啥是条件独立性假设呢,用公式来说就是如果 P ( A , B ∣ C ) = P ( A ∣ C ) P ( B ∣ C ) P(A,B|C)=P(A|C)P(B|C) P(A,BC)=P(AC)P(BC),那么A,B之间就是在C这个条件下独立的,举个例子
    • A:熬夜
    • B:上课迟到
    • C:赖床
    • 在赖床的条件下想使得熬夜通过赖床来影响到上课迟到的概率为0,这就表示熬夜和上课迟到他俩之间是条件相互独立的,这就叫做A与B相互独立
  • 贝叶斯呢就是贝叶斯公式啦

条件概率

  • 条件概率: P ( B ∣ A ) P(B|A) P(BA)
  • 意思就是在A的条件下,B发生的概率

先验概率与后验概率

  • 假设有一个事件B,他是由事件A引起的,那么P(A)就是我们的先验概率

  • 即在事件B发生之前,我们对事件A的概率的一个最初的判断

  • 好,现在我们已知道事件B的概率,想知道事件A的概率,也就是条件概率P(A|B)

  • 即在事件B发生后,我们重新对A的概率进行评估,这就是后验概率

  • 举个例子

    • 我们出去买西瓜,在没摸到西瓜前,我们只看到了西瓜的外表,于是我们判断该瓜是不是好瓜的概率就是先验概率
    • 而当我们摸到西瓜后,我们通过敲击西瓜等一系列方法判断出了该瓜是好瓜或坏瓜后,我们再用我们已经得到的经验来判断该瓜是好瓜的概率,这就是后验概率

全概率公式与贝叶斯公式

  • 全概率全概率,说的就是一个事件全部的概率加在一起的公式,我们可以用一个模型来推导出来
  • image-20211118165002941
  • 这是一个两步式模型,也就是第二步是由第一步得来的,可以看到有很多条路径A1、A2、、、An可以到达B
  • 第一步我们取A1的概率就是P(A1),第二步我们取B的概率就是P(B|A1),也就是在A1完成的条件下B的概率
  • 那么从A1这条路径完成B的概率是不是就是P(A1)P(B|A1),那么第二条第三条路径也是同理
全概率公式
  • 于是 P ( B ) = P ( B ∣ A 1 ) P ( A 1 ) + P ( B ∣ A 2 ) P ( A 2 ) + … + P ( B ∣ A n ) P ( A n ) P(B)=P\left(B \mid A_{1}\right) P\left(A_{1}\right)+P\left(B \mid A_{2}\right) P\left(A_{2}\right)+\ldots+P\left(B \mid A_{n}\right) P\left(A_{n}\right) P(B)=P(BA1)P(A1)+P(BA2)P(A2)++P(BAn)P(An)
  • 将各个通往B的路径的概率全部加在一起,这就是全概率公式
  • 那贝叶斯公式是什么呢?贝叶斯是已知B,我们来求A1、A2或者An的概率,也就是用后验概率来推理先验概率,也就是求P(A1|B)或者P(A2|B)等等
贝叶斯公式
  • 于是 P ( A i ∣ B ) = P ( A i ) P ( B ∣ A i ) ∑ j = 1 n P ( A j ) P ( B ∣ A j ) = P ( A i ) P ( B ∣ A i ) P ( A 1 ) P ( B ∣ A 1 ) + … + P ( A n ) P ( B ∣ A n ) P\left(A_{i} \mid B\right)=\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{\sum_{j=1}^{n} P\left(A_{j}\right) P\left(B \mid A_{j}\right)}=\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{P\left(A_{1}\right) P\left(B \mid A_{1}\right)+\ldots+P\left(A_{n}\right) P\left(B \mid A_{n}\right)} P(AiB)=j=1nP(Aj)P(BAj)P(Ai)P(BAi)=P(A1)P(BA1)++P(An)P(BAn)P(Ai)P(BAi)
  • 贝叶斯公式也就是用一条路径的概率去除于所有路径的概率,举个例子
    • 我们有十条道路回家,那么随机选到第一条道路的概率是不是就是十分之一,也就是用这一条路的概率去除上所有回家的道路
  • 最后我们将全概率公式与贝叶斯公式结合起来,就是:
    • P ( A i ∣ B ) = P ( A i ) P ( B ∣ A i ) P ( B ) P\left(A_{i} \mid B\right)=\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{P(B)} P(AiB)=P(B)P(Ai)P(BAi)

概率因子(可能性函数)

  • 我们现在已经知道了贝叶斯公式: P ( A i ∣ B ) = P ( A i ) P ( B ∣ A i ) P ( B ) P\left(A_{i} \mid B\right)=P\left(A_{i}\right)\frac{ P\left(B \mid A_{i}\right)}{P(B)} P(AiB)=P(Ai)P(B)P(BAi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值