大数据向量检索的细节问题

本文探讨了大数据向量检索的问题,包括向量维度选择、数据存储优化、ES操作、requests与flask请求测试,以及对比不同检索方法的效果。通过实验发现,降低向量精度能有效节省存储空间,而在ES中删除无用数据、选择合适的数据格式至关重要。针对检索效率,1kw级别数据的暴力检索响应时间过长,提出了对专用向量库的需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景:现有亿级别数据(条数),其文本大小约为150G,label为字符串,content为文本。用于向量检索,采用上次的试验进行,但有如下问题需要面对:

1、向量维度及所需空间

向量维度一版采用768的bert系列的模型推理得到,openai也有类似的功能,不过是2倍的维度(即1536),至于哪个好坏,都宣称自己比较好,寡人实际应用中有实践:m3e-base似乎不错。

由于faiss需要float32的小数,根据下面试验,可以发现如果直接转成np.float32数据类型的数据然后直接进行存储(txt存储,每行进行存储),那么保留小数点后8位后存储的大小约为直接存储的数据的一半大小,同时节约了磁盘大小。在运行时,因为是大数据级别的,不建议将所有向量都求出来再进行存储,那样需要很大的内存,一般机器不支持,我这里的200G+的机器都over几次了。

存储试验:

res=np.random.randn
要实现高效且精确的向量检索,首先需要对OpenSearch有所了解。OpenSearch是一个分布式智能搜索引擎,它专为处理大数据和非结构化数据设计,支持向量检索功能,能够将非结构化数据如图片、音频、视频转化为结构化信息进行搜索。这里将介绍如何配置向量索引,并通过OpenSearch进行高效且精确的向量检索操作。 参考资源链接:[OpenSearch向量检索:高效处理非结构化数据的解决方案](https://wenku.csdn.net/doc/5s7f3if9g3) 步骤一:准备数据源 首先,确保你的非结构化数据已经准备好,比如图片、音频或视频文件,并且已经转换成了相应的向量数据。如果你使用的是MaxCompute表数据,确保相关的表数据已经准备好,并且可以通过API导入到OpenSearch中。 步骤二:配置向量索引 接下来,根据你的业务需求配置向量索引。例如,你需要决定使用哪个向量算法(HNSW、QC、Linear等),以及向量的维度和距离类型。这些配置选项决定了向量检索的性能和准确度。 步骤三:创建索引并同步数据 使用OpenSearch提供的API,创建一个新的索引,并配置相应的映射(Mapping)来指定字段类型和参数。通过API接口同步你的数据源到OpenSearch中,并确保所有向量数据已经索引化。 步骤四:执行向量检索 一旦数据索引完成,你可以通过API发起向量检索请求。这通常涉及到发送一个包含查询向量的请求到OpenSearch,系统会返回与查询向量最相似的数据集。 步骤五:优化检索结果 通过调整索引配置和查询参数来优化检索结果的准确度和性能。可以尝试不同的距离计算方法或调整相似度阈值来找到最佳检索效果。 通过以上步骤,你可以利用OpenSearch实现对非结构化数据的高效且精确的向量检索。此外,OpenSearch的实时同步功能确保了数据的实时性和检索的时效性,这对处理实时更新的数据尤为重要。为了深入理解向量检索的原理和优化方法,推荐阅读《OpenSearch向量检索:高效处理非结构化数据的解决方案》。该资料详细介绍了向量检索的技术细节和应用场景,对于提升你的搜索技术理解和应用能力非常有帮助。 参考资源链接:[OpenSearch向量检索:高效处理非结构化数据的解决方案](https://wenku.csdn.net/doc/5s7f3if9g3)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小李飞刀李寻欢

您的欣赏将是我奋斗路上的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值