【动态规划】最长回文子序列(java)

265 篇文章 2 订阅
235 篇文章 0 订阅

leetcode516. 最长回文子序列

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/longest-palindromic-subsequence

题目描述

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。
子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1:
输入:s = “bbbab”
输出:4
解释:一个可能的最长回文子序列为 “bbbb” 。

示例 2:
输入:s = “cbbd”
输出:2
解释:一个可能的最长回文子序列为 “bb” 。

提示:
1 <= s.length <= 1000
s 仅由小写英文字母组成

暴力递归

解题思路

采用指针法:
一个指针卡住左边,一个卡住右边。
递归法去比较,
base case: 入股左右指针相遇,单个字符肯定是回文,返回1.
递归状况时:
左指针和右指针字符相同,那就同时移动一位。回文长度加2.
不等时,要分左指针移动,和右指针移动两种情况,
最后我们取几种情况的最大值。

代码演示

 public static int longestPalindromeSubseq(String s) {
        if (s == null || s.length() == 0){
            return 0;
        }
        int[][] ans = new int[s.length()][s.length()];
        return process(s.toCharArray(),0,s.length()-1,ans);
       // return process(s.toCharArray(),0,s.length()-1);
    }

    /**
     * 递归
     * @param s 字符数组
     * @param L 左指针
     * @param R 右指针
     * @return
     */
    public static int process(char[] s,int L,int R){
        //base case
        if(L > R){
            return 0;
        }
        //base case 单个字符肯定是回文  返回1
        if(L == R){
            return 1;
        }

        int p1 = 0;
        int p2 = 0;
        int p3 = 0;
        //相等时 同时移动
        if(s[L] == s[R]){
            p1 = 2 + process(s,L + 1,R - 1);
        }else{
            //不等时分两种情况,最后要最大值
            p2 = process(s,L + 1,R);
            p3 = process(s,L,R - 1);
        }
        return Math.max(p1,Math.max(p2,p3));

    }

递归 + 缓存

解题思路

递归中有太多的重复计算,我们加到缓存中,减少计算量
要根据变量来确定如何加缓存,
变量是L 和 R ,因此用二维数组来缓存

代码演示

 public static int longestPalindromeSubseq(String s) {
        if (s == null || s.length() == 0){
            return 0;
        }
        int[][] ans = new int[s.length()][s.length()];
        return process(s.toCharArray(),0,s.length()-1,ans);
       // return process(s.toCharArray(),0,s.length()-1);
    }

 /**
     * 递归加 缓存
     * @param s 字符数组
     * @param L 左指针
     * @param R 右指针
     * @param dp 缓存表
     * @return
     */
    public static int process(char[] s,int L,int R,int[][]dp){
        //base case
        if(L > R){
            return 0;
        }
        if(L == R){
            return 1;
        }
        //缓存中有的话 直接缓存拿
        if(dp[L][R] != 0){
            return dp[L][R];
        }

        int p1 = 0;
        int p2 = 0;
        int p3 = 0;
        if(s[L] == s[R]){
            p1 = 2 + process(s,L + 1,R - 1,dp);
        }else{
            p2 = process(s,L + 1,R,dp);
            p3 = process(s,L,R - 1,dp);
        }
        int ans = Math.max(p1,Math.max(p2,p3));
        //结果加到缓存中
        dp[L][R] = ans;
        return ans;

    }

动态规划

解题思路

动态规划就是对递归j加缓存方案的改写
三个步骤
1.根据base case 去初始化缓存表,
2.把递归过程改成从递归缓存表中拿值的过程
3.返回值就是调用递归的最初始状态的值。

代码演示

 /**
     * 动态规划
     * @param s
     * @return
     */
    public static int dp(String s){
        char[] chars = s.toCharArray();
        int N = chars.length;
        int[][] ans = new int[N][N];
        //base case 去初始化
        for (int i = 0; i < N ;i++){
            ans[i][i] = 1;
        }

        //根据递归过程去填值
        for (int i = 1;i < N ;i++){
            int R = i;
            int L = 0;
            while (R < N){
                int p1 = 0;
                int p2 = 0;
                int p3 = 0;
                if (chars[L] == chars[R]){
                    p1 = 2 + ans[L + 1][R - 1];
                }else{
                    p2 = ans[L + 1][R];
                    p3 = ans[L][R - 1];
                }
                ans[L][R] = Math.max(p1,Math.max(p2,p3));
                L++;
                R++;
            }
        }
        //返回调用的最初始状态。
        return ans[0][N - 1];
    }

动态规划专题

leetcode1143. 最长公共子序列

leetcode.486. 预测赢家

动态规划.背包问题–填满背包的最大价格

leetcode–N 皇后 II

最长回文子序列(Longest Palindromic Subsequence,LPS)问题是指在一个给定的字符串中找到一个最长回文子序列回文子序列是指一个序列本身不是回文串,但它是一个回文串的子序列。 在C++中,我们可以使用动态规划(Dynamic Programming,DP)的方法来解决这个问题。动态规划的主要思想是将一个大问题分解成小问题,然后从小问题出发,逐渐求得大问题的解。 以下是一个使用动态规划解决最长回文子序列问题的C++示例代码: ```cpp #include <iostream> #include <vector> #include <string> using namespace std; // 函数用于计算字符串str的最长回文子序列长度 int longestPalindromeSubseq(string str) { int n = str.size(); // 创建一个二维数组dp,用于存储子问题的解,初始化所有值为0 vector<vector<int>> dp(n, vector<int>(n, 0)); // 单个字符的最长回文子序列长度为1,所以对角线上的元素设置为1 for (int i = 0; i < n; i++) { dp[i][i] = 1; } // 如果两个字符相同,那么它俩组成的子序列长度为2 for (int cl = 2; cl <= n; cl++) { for (int i = 0; i < n - cl + 1; i++) { int j = i + cl - 1; if (str[i] == str[j] && cl == 2) { dp[i][j] = 2; } else if (str[i] == str[j]) { dp[i][j] = dp[i + 1][j - 1] + 2; } else { dp[i][j] = max(dp[i][j - 1], dp[i + 1][j]); } } } // 返回整个字符串最长回文子序列长度 return dp[0][n - 1]; } int main() { string str; cout << "请输入一个字符串:" << endl; cin >> str; cout << "最长回文子序列长度为:" << longestPalindromeSubseq(str) << endl; return 0; } ``` 在这段代码中,`dp[i][j]`表示从字符串的第`i`个字符到第`j`个字符组成的子串的最长回文子序列长度。通过初始化对角线以及递推式逐步填充这个二维数组,最终可以得到整个字符串最长回文子序列长度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值