一、哈希
#include<iostream>
#include<string.h>
#include<algorithm>
#include<stdio.h>
using namespace std;
long long prime=10000000007;
long long p=10000000009;
long long base=1381;
long long a[10010];
char str[10010];
int n,ans;
long long hash(char s[]){
int len=strlen(s);
long long flag=0;
for(int i=0;i<len;i++)
flag = (flag*base+(long long)s[i])%p+prime;
return flag;
}
int main(){
cin >> n;
for(int i=1;i<=n;i++){
cin >> str;
a[i]=hash(str);
}
sort(a+1,a+n+1);
ans = unique(a+1,a+n+1)-a-1;
cout << ans;
}
二、哈希冲突
由于进行哈希的数据可以认为是无限的,而考虑到 int 或 long long 的范围,要进行取模,所以哈希后的数据是有限的,因此就会出现两个不同的数据哈希值相同的情况,这种情况就叫哈希冲突,解决哈希冲突的办法有如下几种:
1. 开放地址法(再散列法)
产生冲突后,按照某一次序找到下一个空闲的单元,将冲突的元素放入。
(1) 线性探查法
从产生冲突的位置开始,依次往后查找,直到找到空闲的单元,将数据放入。
(2) 平方探查法
从产生冲突的位置开始,依次查找第 1 2 1^2 12 、 2 2 2^2 22 、 3 2 3^2 32 ··· n 2 n^2 n2 个单元,直到找到空闲的单元。
(3) 双散列函数探查法
取一个素数,把它作为步长,依次往后查找空闲的单元。
2. 链地址法(拉链)
将哈希值相同的元素建成链表,把 head 放在散列表里。或者在相同元素数量很多时用红黑树代替链表。
3. 再哈希法
构造多个不同的哈希函数,当第一个函数冲突时,再用第二个函数进行计算。一般情况下用两个哈希函数就可以把冲突概率降到很低。
4. 建立公共溢出区
建一个溢出表,将所有产生冲突的数据存入溢出表。