题目:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
算法解析:使用动态规划DP
求出经过当前位置的最短路径
[ [2], [5,6], [11,10,13], [15,11,18,16] ]
代码如下:
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
int row = triangle.size();
for(int i = 1; i < row; i++)
{
int m = triangle[i].size();
for(int j = 0; j < m; j++)
{
if(j == 0)
{
triangle[i][j] += triangle[i-1][j];
}
else if(j == m-1)
{
triangle[i][j] += triangle[i-1][j-1];
}
else
{
triangle[i][j] += min(triangle[i-1][j-1],triangle[i-1][j]);
}
}
}
int minPath = INT_MAX;
for(int i = 0; i < row; i++)
{
minPath = min(minPath,triangle[row-1][i]);
}
return minPath;
}
};