Say you have an array for which the ith element is the price of a given stock on day i.
If you were only permitted to complete at most one transaction (i.e., buy one and sell one share of the stock), design an algorithm to find the maximum profit.
Note that you cannot sell a stock before you buy one.
Example 1:
Input: [7,1,5,3,6,4]
Output: 5
Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Not 7-1 = 6, as selling price needs to be larger than buying price.
Example 2:
Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.
解法一:
先求出,i 位及以后各位的最大值记为s[i]
然后计算,第i 位买进,最多赚的钱,并记录赚钱最多多少
代码复杂度 O(n)
代码如下:
class Solution {
public:
int maxProfit(vector<int>& prices) {
int n = prices.size();
if(n < 2) return 0;
vector<int> s(n,INT_MIN);
for(int i = n - 1; i >= 0; i--)
{
s[i] = i < n - 1 ? s[i + 1] : prices[i];
s[i] = max(prices[i],s[i]);
}
int res = 0;
for(int i = 0; i < n - 1; i++)
{
res = max(res,s[i + 1] - prices[i]);
}
return res;
}
};
解法二:
一次遍历,记录i位置以前的最小值,同时计算 i 位置卖出的收益,并记录最大收益
代码如下:
class Solution {
public:
int maxProfit(vector<int>& prices) {
int min_price = INT_MAX;
int max_profit = 0;
for(int i = 0; i < prices.size(); i++)
{
if(prices[i] < min_price)
min_price = prices[i];
else if(prices[i] - min_price > max_profit)
max_profit = prices[i] - min_price;
}
return max_profit;
}
};