题目描述
在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。
考虑一个约束满足问题的简化版本:假设x1,x2,x3…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x4≠x1,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。
现在给出一些约束满足问题,请分别对它们进行判定。
输入输出格式
输入格式:
从文件prog.in中读入数据。
输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。
对于每个问题,包含若干行:
第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若�e=0,则该约束条件为xi≠xj;
输出格式:
输出到文件 prog.out 中。
输出文件包括t行。
输出文件的第 k行输出一个字符串“ YES” 或者“ NO”(不包含引号,字母全部大写),“ YES” 表示输入中的第k个问题判定为可以被满足,“ NO” 表示不可被满足。
输入输出样例
输入样例#1: 复制
2
2
1 2 1
1 2 0
2
1 2 1
2 1 1
输出样例#1: 复制
NO
YES
输入样例#2: 复制
2
3
1 2 1
2 3 1
3 1 1
4
1 2 1
2 3 1
3 4 1
1 4 0
输出样例#2: 复制
YES
NO
说明
【样例解释1】
在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。
在第二个问题中,约束条件为:x1=x2,x1=x2。这两个约束条件是等价的,可以被同时满足。
【样例说明2】
在第一个问题中,约束条件有三个:x1=x2,x2=x3,x3=x1。只需赋值使得x1=x1=x1,即可同时满足所有的约束条件。
在第二个问题中,约束条件有四个:x1=x2,x2=x3,x3=x4,x4≠x1。由前三个约束条件可以推出x1=x2=x3=x4,然而最后一个约束条件却要求x1≠x4,因此不可被满足。
【数据范围】
【时限2s,内存512M】
.
.
.
.
.
.
分析
并查集+离散化
.
.
.
.
.
.
程序:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int fa[1000001],num[1000001],h[2000001];
struct node
{
int a,id;
}h1[2000001];
bool cmp(node x,node y)
{
return x.a<y.a;
}
int find(int x)
{
if (fa[x]==x) return x; else return fa[x]=find(fa[x]);
}
int main()
{
int t;
scanf("%d",&t);
while (t--)
{
int n,k=0;
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
scanf("%d%d%d",&h1[i*2-1].a,&h1[i*2].a,&num[i]);
h1[i*2-1].id=i*2-1;
h1[i*2].id=i*2;
}
sort(h1+1,h1+2*n+1,cmp);
for (int i=1;i<=2*n;i++)
{
if (h1[i].a!=h1[i-1].a) k++;
h[h1[i].id]=k;
fa[i]=i;
}
int bz=0;
for (int i=1;i<=n;i++)
if (num[i]==1)
{
int fx=find(h[i*2-1]),fy=find(h[i*2]);
if (fx!=fy) fa[fx]=fy;
}
for (int i=1;i<=n;i++)
if (num[i]==0)
{
int fx=find(h[i*2-1]),fy=find(h[i*2]);
if (fx==fy)
{
bz=1;
printf("NO\n");
break;
}
}
if (bz==0) printf("YES\n");
}
return 0;
}