1 机器人软件开发学习所需通用技术栈(一)

机器人软件工程师技术路线(如有缺失,欢迎补充)

1. 机器人软件开发工程师技术路线

1.1 基础知识

  • C/C++编程:掌握C/C++语言基础,包括数据结构、算法、内存管理等。
  • 操作系统:了解Linux或Windows等操作系统的基本原理和常用命令。

1.2 嵌入式系统开发

  • 嵌入式编程:学习Linux应用层知识嵌入式开发平台,掌握嵌入式C++编程。
  • 嵌入式系统架构:了解嵌入式系统的硬件架构和软件架构,包括处理器、内存、外设等。

1.3 机器人控制系统开发(分支1)

  • 机器人基础:了解机器人的基本原理,包括机械结构、传感器、执行器等。
  • 控制系统设计:学习控制理论,掌握PID控制、状态空间控制等基本控制算法。
  • 运动控制:学习机器人运动学、动力学,掌握运动控制算法,如DH参数法、逆运动学等。

1.4 机器人编程框架(分支2)

  • ROS:学习ROS(Robot Operating System)机器人操作系统,掌握ROS的基本概念和架构。
  • ROS编程:学习ROS的编程方法,包括话题、服务、参数、动作等通信机制。
  • ROS应用开发:掌握ROS中常见组件的开发,如节点、服务、话题、动作等。

    机器人视觉与感知(部分)

  • 计算机视觉基础:学习计算机视觉基础,包括图像处理、特征提取、目标检测等。
  • 传感器数据处理:学习机器人常用传感器,如激光雷达、摄像头等,掌握传感器数据处理方法。

    机器人导航与定位(部分)

  • SLAM:学习SLAM(Simultaneous Localization and Mapping)技术,包括激光SLAM、视觉SLAM等。
  • 路径规划:学习机器人路径规划算法,如A*算法、RRT算法等。

    机器人仿真(部分)

  • 机器人仿真与调试:学习机器人仿真与调试方法,包括ROS仿真、Gazebo等。

2. 机器人软件算法工程师 (一般也需要掌握机器人软件开发知识)

2.0 编程基础

  • 嵌入式编程:学习Linux应用层知识嵌入式开发平台,掌握嵌入式C++编程。

2.1 数学基础

  • 线性代数:掌握矩阵、向量等线性代数基础。
  • 概率论与数理统计:学习概率论与数理统计基础,包括随机变量、概率分布等。

2.2 机器学习与深度学习

  • 机器学习基础:学习机器学习基础,包括监督学习、无监督学习、强化学习等。
  • 深度学习基础:学习深度学习基础,包括神经网络、卷积神经网络、循环神经网络等。

2.3 计算机视觉与图像处理

  • 计算机视觉:学习计算机视觉基础,包括图像处理、特征提取、目标检测等。
  • 图像处理:学习图像处理基础,包括图像滤波、图像分割、图像识别等。

2.4 机器人感知与理解

  • 多模态感知:学习多模态感知技术,包括视觉、听觉、触觉等感知模态。
  • 机器人理解:学习机器人理解技术,包括自然语言处理、知识图谱等。

2.5 机器人智能决策与规划

  • 智能决策:学习智能决策技术,包括决策树、强化学习等。
  • 规划与优化:学习规划与优化技术,包括路径规划、任务规划等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵌入式&机器人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值