机器人软件工程师技术路线(如有缺失,欢迎补充)
1. 机器人软件开发工程师技术路线
1.1 基础知识
- C/C++编程:掌握C/C++语言基础,包括数据结构、算法、内存管理等。
- 操作系统:了解Linux或Windows等操作系统的基本原理和常用命令。
1.2 嵌入式系统开发
- 嵌入式编程:学习Linux应用层知识嵌入式开发平台,掌握嵌入式C++编程。
- 嵌入式系统架构:了解嵌入式系统的硬件架构和软件架构,包括处理器、内存、外设等。
1.3 机器人控制系统开发(分支1)
- 机器人基础:了解机器人的基本原理,包括机械结构、传感器、执行器等。
- 控制系统设计:学习控制理论,掌握PID控制、状态空间控制等基本控制算法。
- 运动控制:学习机器人运动学、动力学,掌握运动控制算法,如DH参数法、逆运动学等。
1.4 机器人编程框架(分支2)
- ROS:学习ROS(Robot Operating System)机器人操作系统,掌握ROS的基本概念和架构。
- ROS编程:学习ROS的编程方法,包括话题、服务、参数、动作等通信机制。
- ROS应用开发:掌握ROS中常见组件的开发,如节点、服务、话题、动作等。
机器人视觉与感知(部分)
- 计算机视觉基础:学习计算机视觉基础,包括图像处理、特征提取、目标检测等。
- 传感器数据处理:学习机器人常用传感器,如激光雷达、摄像头等,掌握传感器数据处理方法。
机器人导航与定位(部分)
- SLAM:学习SLAM(Simultaneous Localization and Mapping)技术,包括激光SLAM、视觉SLAM等。
- 路径规划:学习机器人路径规划算法,如A*算法、RRT算法等。
机器人仿真(部分)
- 机器人仿真与调试:学习机器人仿真与调试方法,包括ROS仿真、Gazebo等。
2. 机器人软件算法工程师 (一般也需要掌握机器人软件开发知识)
2.0 编程基础
- 嵌入式编程:学习Linux应用层知识嵌入式开发平台,掌握嵌入式C++编程。
2.1 数学基础
- 线性代数:掌握矩阵、向量等线性代数基础。
- 概率论与数理统计:学习概率论与数理统计基础,包括随机变量、概率分布等。
2.2 机器学习与深度学习
- 机器学习基础:学习机器学习基础,包括监督学习、无监督学习、强化学习等。
- 深度学习基础:学习深度学习基础,包括神经网络、卷积神经网络、循环神经网络等。
2.3 计算机视觉与图像处理
- 计算机视觉:学习计算机视觉基础,包括图像处理、特征提取、目标检测等。
- 图像处理:学习图像处理基础,包括图像滤波、图像分割、图像识别等。
2.4 机器人感知与理解
- 多模态感知:学习多模态感知技术,包括视觉、听觉、触觉等感知模态。
- 机器人理解:学习机器人理解技术,包括自然语言处理、知识图谱等。
2.5 机器人智能决策与规划
- 智能决策:学习智能决策技术,包括决策树、强化学习等。
- 规划与优化:学习规划与优化技术,包括路径规划、任务规划等。