Stall Reservations(贪心 优先队列)

Stall Reservations

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 10792 Accepted: 3814 Special Judge

Description

Oh those picky N (1 <= N <= 50,000) cows! They are so picky that each one will only be milked over some precise time interval A..B (1 <= A <= B <= 1,000,000), which includes both times A and B. Obviously, FJ must create a reservation system to determine which stall each cow can be assigned for her milking time. Of course, no cow will share such a private moment with other cows. 

Help FJ by determining:
  • The minimum number of stalls required in the barn so that each cow can have her private milking period
  • An assignment of cows to these stalls over time
Many answers are correct for each test dataset; a program will grade your answer.

Input

Line 1: A single integer, N 

Lines 2..N+1: Line i+1 describes cow i's milking interval with two space-separated integers.

Output

Line 1: The minimum number of stalls the barn must have. 

Lines 2..N+1: Line i+1 describes the stall to which cow i will be assigned for her milking period.

Sample Input

5
1 10
2 4
3 6
5 8
4 7

Sample Output

4
1
2
3
2
4

Hint

Explanation of the sample: 

Here's a graphical schedule for this output: 
 
Time     1  2  3  4  5  6  7  8  9 10

Stall 1 c1>>>>>>>>>>>>>>>>>>>>>>>>>>>

Stall 2 .. c2>>>>>> c4>>>>>>>>> .. ..

Stall 3 .. .. c3>>>>>>>>> .. .. .. ..

Stall 4 .. .. .. c5>>>>>>>>> .. .. ..
Other outputs using the same number of stalls are possible.

Source

USACO 2006 February Silver

 

 

1.学会优先队列的使用。

2.解题思路:

    1) 把所有奶牛按开始时间从小到大排序。
    2) 为第一头奶牛分配个畜栏。
    3) 依次处理后面每头奶牛 i。处理 i时,考虑已分配畜栏中结束间最 早的畜栏 x。
若 E(x) < S( E(x) < S( E(x) < S( i), 则不用分配新畜栏, i可进入 x, 并修改 E(x) 为E( i)
若 E(x) >= S( E(x) >= S( E(x) >= S(E(x) >= S( i),则分配新畜栏 y, 记 E( y) = E( y) = i)
直到所有奶牛处理结束
始终 需要用优先队列存放已经分配的畜栏,并使得结束时间最早始终 需要用优先队列存放已经分配的畜栏。

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<queue>
#include<vector>
using namespace std;

struct cows
{
	int s;
	int end;
	int no;
	bool operator<(const cows &c)const
	{
		return s<c.s;
	}
}cow[50006]; 
int pos[50006];

struct stall
{
	int end;
	int no;
	bool operator <(const stall &s)const
	{
		return end>s.end;
	}
	stall(int e,int n):end(e),no(n){}
	
};

int main()
{
	int n;
	int all=0;
	cin>>n;
	for(int i=0;i<n;i++)
	{
		cin>>cow[i].s>>cow[i].end;
		cow[i].no=i;
	}
	sort(cow,cow+n);
	priority_queue<stall>q;
	for(int i=0;i<n;i++)
	{
		if(q.empty())//没有空的,直接申请 
		{
			all++;//栅栏数加一 
			q.push(stall(cow[i].end,all));//将该牛结束的时间作为栅栏开始使用的时间,all作为编号 
			pos[cow[i].no]=all;
		}
		else
		{
			stall sta=q.top();//优先队列 (大根堆模型)
			if(sta.end<cow[i].s)//如果栅栏结束的时间 ,比下一头牛申请的开始时间小,就可以使用 
			{
				q.pop();
				pos[cow[i].no]=sta.no;
				q.push(stall(cow[i].end,sta.no));
			}
			else//都不合适,还得重新申请 
			{
				all++;
				q.push(stall(cow[i].end,all));
				pos[cow[i].no]=all;
			}
		}
	}
	cout<<all<<endl;
	for(int i=0;i<n;i++)
	{
		cout<<pos[i]<<endl;
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值