bzoj 2818 Gcd(莫比乌斯反演)

Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4

HINT

hint

对于样例(2,2),(2,4),(3,3),(4,2)


1<=N<=10^7


裸莫比乌斯反演。

设F(n) 为gcd是n的倍数的个数,f(n)为gcd是n的个数,

直接就求  sigma(f(p[i]))就行了,p[i]是质数。


莫比乌斯反演有两种形式,这里我们使用第二种:

一、

二、


#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;


const int maxn = 1e7 + 10;
int p[maxn/10];
int flag[maxn];
int mu[maxn];
int cnt = 0;
void init()
{
    int i,j;
    mu[1] = 1;
    for(i=2;i<maxn;i++)
    {
        if(!flag[i])
        {
            p[cnt++] = i;
            mu[i] = -1;
        }
        for(j=0;j<cnt&&p[j]*i<maxn;j++)
        {
            flag[p[j]*i] = 1;
            if(i % p[j] == 0)
            {
                mu[p[j]*i] = 0;
                break;
            }
            mu[p[j]*i] = -mu[i];
        }
    }
}

int main(void)
{
    int n,i,j;
    init();
    while(scanf("%d",&n)==1)
    {
        LL ans = 0;
        for(i=0;i<cnt&&p[i]<=n;i++)
        {
            LL sum = 0;
            for(j=p[i];j<=n;j+=p[i])
            {
                sum += (LL)mu[j/p[i]]*(n/j)*(n/j);
            }
            ans += sum;
        }
        printf("%lld\n",ans);
    }


    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值