问题描述:
给出一个x集合和y集合的二分图,他们之间有一定的可以匹配的边。求最大匹配。
匈牙利算法-DFS:
增广路:以一条未匹配的边开始,且以一条未匹配的边结束,并且未匹配边与匹配边交替出现的路径叫做增广路。
原理:从当前匹配M出发,每次检查每一个未覆盖点,然后从它出发,找到可增广路,则沿着这条增广路扩充,直到不存在增广路为止。
关于DFS搜索时的几点说明:
1:由于每一条增广路只能是匹配数加一,所以找到两个顶点都没有被覆盖的边时即可结束。
2:看DFS代码时,每次找到的一条边一定是一条没有被匹配的边。因为不会存在1和2匹配,2又和3匹配的情况。(与匹配的定义相矛盾)。
3:当在更新匹配时,看起来没有处理掉原匹配,其实原匹配在更新时已经被覆盖掉了。因为我们更新了增广路上的所有的顶点的匹配关系了。
例题:
给出一个二分图的关系,求最大匹配?
输入:首先输入nx,ny,m。分别表示x集合y集合的元素个数和可匹配的关系数。接下来m行输入可进行匹配的元素的编号xi,yj。
输出:最大匹配数。
输入
3 4 6
0 1
0 2
1 1
2 0
2 2
2 3
输出:
3
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int maxn=100;//x集合和y集合中元素个数的最大值
int nx,ny;//x,y集合中元素的个数
int g[maxn][maxn];//g[i][j]=1表示xi和yj可以匹配
int cx[maxn],cy[maxn];//cx[i]表示在求得的最大匹配中与xi匹配的y顶点,cy[i]同理
int mk[maxn];//在搜索时记录是否已经访问过
int path(int u)//求增广路,每次只能使匹配数加一
{
for(int v=0;v<ny;v++)
{
if(g[u][v] && !mk[v])//找到一条没有匹配的边
{
mk[v]=1;
if(cy[v]==-1 || path(cy[v]))//若找到一条两端都没有匹配的边则已找到。注意前面的条件满足时将不会进行递归
{
cx[u]=v;//更新匹配,原匹配已被覆盖
cy[v]=u;
return 1;
}
}
}
return 0;
}
int MaxMatch()
{
int res=0;
memset(cx,-1,sizeof(cx));
memset(cy,-1,sizeof(cy));
for(int i=0;i<nx;i++)//每次找x中没有被覆盖的点
{
if(cx[i]==-1)
{
memset(mk,0,sizeof(mk));
res+=path(i);
}
}
return res;
}
int main()
{
//freopen("in.txt","r",stdin);
int m,u,v;
while(scanf("%d%d%d",&nx,&ny,&m)!=EOF)
{
memset(g,0,sizeof(g));
for(int i=0;i<m;i++)
{
scanf("%d%d",&u,&v);
g[u][v]=1;
}
int ans=MaxMatch();
printf("%d\n",ans);
}
return 0;
}