Help Jimmy
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 10561 Accepted: 3464
Description
“Help Jimmy” 是在下图所示的场景上完成的游戏。
场景中包括多个长度和高度各不相同的平台。地面是最低的平台,高度为零,长度无限。
Jimmy老鼠在时刻0从高于所有平台的某处开始下落,它的下落速度始终为1米/秒。当Jimmy落到某个平台上时,游戏者选择让它向左还是向右跑,它跑动的速度也是1米/秒。当Jimmy跑到平台的边缘时,开始继续下落。Jimmy每次下落的高度不能超过MAX米,不然就会摔死,游戏也会结束。
设计一个程序,计算Jimmy到底地面时可能的最早时间。
Input
第一行是测试数据的组数t(0 <= t <= 20)。每组测试数据的第一行是四个整数N,X,Y,MAX,用空格分隔。N是平台的数目(不包括地面),X和Y是Jimmy开始下落的位置的横竖坐标,MAX是一次下落的最大高度。接下来的N行每行描述一个平台,包括三个整数,X1[i],X2[i]和H[i]。H[i]表示平台的高度,X1[i]和X2[i]表示平台左右端点的横坐标。1 <= N <= 1000,-20000 <= X, X1[i], X2[i] <= 20000,0 < H[i] < Y <= 20000(i = 1..N)。所有坐标的单位都是米。
Jimmy的大小和平台的厚度均忽略不计。如果Jimmy恰好落在某个平台的边缘,被视为落在平台上。所有的平台均不重叠或相连。测试数据保证问题一定有解。
Output
对输入的每组测试数据,输出一个整数,Jimmy到底地面时可能的最早时间。
Sample Input
1
3 8 17 20
0 10 8
0 10 13
4 14 3
Sample Output
23
Source
POJ Monthly–2004.05.15 CEOI 2000
分析:
最近都在练习动态规划,所以我尽量把思路写清楚,希望自己dp有进步。
我们看到游戏的图片的时候就可能有感觉了,游戏类似于从最高点往下走,走到最后一层。这就是我们刚开始接触dp时的树型dp,也是从最上层到最下层。所以思路类似。
如果我们得到了以平台左边为起点及以平台右边为起点到地面的最短时间,那么选择往左走还是往右走就很容易了。这样,原问题就分解为两个子问题这两个子问题和原问题的形式是一致的了,也就找到了“状态”dp[i][j], j = 0, 1 (dp[i][0]表示以i号平台左边为起点到地面的最短时间,dp[i][1]]表示以i号平台右边为起点到地面的最短时间),而“状态转移方程”如下:
dp[i][0] = H[i] - H[m] + Min (dp[m][0] + X1[i] - X1[m], dp[m][1] + X2[m] - X1[i]); m为i左边下面的平台的编号
dp[i][1] = H[i] - H[m] + Min (dp[m][0] + X2[i] - X1[m], dp[m][1] + X2[m] - X2[i]); m为i右边下面的平台的编号
做动态规划问题时,找到了状态后就从“极限状态”开始往一般状态推。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn = 1005;
int dp[maxn][2],MAX;
int INF = 999999999;
struct node
{
int x1,x2,h;
}p[maxn];
int cmp(node a,node b)
{
return a.h < b.h;
}
int main()
{
int t,n,x,y;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d%d",&n,&x,&y,&MAX);
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&p[i].x1,&p[i].x2,&p[i].h);
}
p[0].x1 = -20000; p[0].x2 = 20000; p[0].h = 0;
p[n+1].x1 = p[n+1].x2 = x; p[n+1].h = y;
sort(p,p+n+2,cmp);
// for(int i=1;i<=n;i++)
// cout<<p[i].h<<endl;
for(int i=1;i<=n+1;i++)
{
int k = i-1; int flag = 0;
//左边
while(k > 0 && p[i].h - p[k].h <= MAX)
{
if(p[i].x1 >= p[k].x1 && p[i].x1 <= p[k].x2)
{
dp[i][0] = p[i].h - p[k].h + min(dp[k][0] + p[i].x1 - p[k].x1,dp[k][1] + p[k].x2 - p[i].x1);
flag = 1; break;
}
else k--;
}
if(k == 0) dp[i][0] = p[i].h - p[k].h;
else if(!flag) dp[i][0] = INF;
//右边
k = i-1; flag = 0;
while(k > 0 && p[i].h - p[k].h <= MAX)
{
if(p[i].x2 >= p[k].x1 && p[k].x2 >= p[i].x2)
{
dp[i][1] = p[i].h - p[k].h + min(dp[k][0] + p[i].x2 - p[k].x1,dp[k][1] + p[k].x2 - p[i].x2);
flag = 1; break;
}
else k--;
}
if(k == 0) dp[i][1] = p[i].h - p[k].h;
else if(!flag) dp[i][1] = INF;
}
printf("%d\n",min(dp[n+1][0],dp[n+1][1]));
}
return 0;
}