33 搜索旋转排序数组
假设按照升序排序的数组在预先未知的某个点上进行了旋转。
( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] )。
搜索一个给定的目标值,如果数组中存在这个目标值,则返回它的索引,否则返回 -1 。
你可以假设数组中不存在重复的元素。
你的算法时间复杂度必须是 O(log n) 级别。
示例 1:
输入: nums = [4,5,6,7,0,1,2], target = 0
输出: 4
示例 2:
输入: nums = [4,5,6,7,0,1,2], target = 3
输出: -1
分析:
对于一个有序的数列,在其中查找某个数的位置,使用二分查找,在时间复杂度为log(n)的情况下,可以非常简单和快速处理。
现在题目将一个大小为n的有序数列,变成了两个连接的有序数列,(特例:旋转后和原数列一样),让我们在其中进行二分查找。
所以我们只需要找到两个有序数列的分界点为d,然后分别在这两个有序数列([0,d-1],[d,n-1])中进行二分查找即可。因此可以分为下面两步:
1:查找分界点d。
以a=nums[0]为标记,查找[0,n-1]中第一个小于a的数的位置即为d。
对于特列的情况,d求解出的值为n-1,我们只需将nums[d] 和nums[0]进行比较,取值小的位置为分界点d。
2:分别在两个有序数列([0,d-1],[d,n-1])中进行二分查找。
AC代码:
class Solution {
public:
int search(vector<int>& nums, int target) {
int n =nums.size();
if(n == 0) return -1;
int a = nums[0];
int left = 0, right = n-1, mid;
while(left < right)
{
mid = (left + right) >> 1;
if(nums[mid] >= a) left = mid + 1;
else right = mid;
}
int d = left;
if(nums[0] < nums[d]) d = 0;
left = 0, right = d - 1;
while(left <= right)
{
mid = (left + right) >> 1;
if(nums[mid] < target) left = mid + 1;
else if(nums[mid] > target) right = mid - 1;
else if(nums[mid] == target) return mid;
}
left = d, right = n - 1;
while(left <= right)
{
mid = (left + right) >> 1;
if(nums[mid] < target) left = mid + 1;
else if(nums[mid] > target) right = mid - 1;
else if(nums[mid] == target) return mid;
}
return -1;
}
};