41. 缺失的第一个正数
给定一个未排序的整数数组,找出其中没有出现的最小的正整数。
示例 1:
输入: [1,2,0]
输出: 3
示例 2:
输入: [3,4,-1,1]
输出: 2
示例 3:
输入: [7,8,9,11,12]
输出: 1
说明:
你的算法的时间复杂度应为O(n),并且只能使用常数级别的空间。
分析:
题目的难点在于只能使用常数级别的空间。若题目允许我们开设一个大小为n的标记数值,那么问题就简单了,只需将出现的数字标记一边,然后看哪个数第一个没有被标记(出现)即可。
题目只能使用常数的空间,(注意:是另外开常数级别的空间,其实我们已经有了一个大小为n的空间了,刚开始写leetcode,忘记了不用处理输入。。。。。自己一直在想如何只扫描一遍数据的算法……)
首先,第一个没有出现的正数一定在[1,n+1]之间,所以我们的思路就是:将数组中的每个数a,经过交换,使他处在a-1的位置上,使得数组变得“有序”(对于不在[1,n]之间的数a,我么可以不进行处理)。
然后在扫描一遍数组,看哪个位置上的数a,和这个位置的索引 i 不满足 a == i+1即可。
总结:(自己瞎说的)
这个算法可以处理以下问题: 给你一个大小为n的数组,里面的数是[1…n]的一个任意序列,让你在O(n)时间和常数空间内,将数组排序。
AC代码:
class Solution {
public:
int firstMissingPositive(vector<int>& nums) {
int n = nums.size();
int tmp, a, j;
for(int i=0;i<n;i++)
{
a = nums[i];
j = i;
while(a >= 1 && a <= n && a != j+1)
{
tmp = nums[a-1];
nums[a-1] = a;
j = a-1;
a = tmp;
}
if(a != j+1) nums[i] = a;
}
for(int i=0;i<n;i++)
{
if(nums[i] != i+1) return i+1;
}
return n+1;
}
};