时域
奇异函数信号
冲激函数
冲激偶函数
∫t−∞xδ(x)dx=ϵ(t) ∫ − ∞ t x δ ( x ) d x = ϵ ( t )
使用分部积分法可求解
零状态响应
LTI系统的零状态响应的线性性质、时不变性和微分性质
设激励为 f(⋅) f ( ⋅ ) , 零状态响应为 y(⋅) y ( ⋅ )
y(⋅)=T[f(⋅)] y ( ⋅ ) = T [ f ( ⋅ ) ]
线性性质
T[af(⋅)]=aT[f(⋅)] T [ a f ( ⋅ ) ] = a T [ f ( ⋅ ) ]
时不变性
T[f(t−td)]T[f(k−kd)]=y(t−td)=y(k−kd)(1)(2)} (1) T [ f ( t − t d ) ] = y ( t − t d ) (2) T [ f ( k − k d ) ] = y ( k − k d ) }
微分性质(只有连续信号才有微分)
T[df(t)dt]=dy(t)dt T [ d f ( t ) d t ] = d y ( t ) d t
变换域
1. 变换域的定义(时域到变换域)
2. 复频域的收敛域
3. 变换域与时域的性质
- 线性
- 尺度变换(变量数乘)
- 时移/频移(变量加减常量)
- 时域微积分
- 频域微积分
- 时域卷积
- 频域卷积
- 复频域:初值定理/终值定理
4. 逆变换
5. 变换域分析
- 微分方程的变换解
- 系统函数
- 系统框图
傅里叶变换
1. 正交函数(集)
定义:
如有 n n 个函数
构成一个函数集, 当这些函数在区间 (t1,t2) ( t 1 , t 2 ) 内满足:
∫t2t1ϕi(t)ϕj(t)={
0Ki≠0,i≠j,i=j(3)(4) ∫ t 1 t 2 ϕ i ( t ) ϕ j ( t ) = { (3) 0 , i ≠ j (4) K i ≠ 0 , i = j
式中 Ki K i 为常数, 则称此函数集为在区间 (t1,t2) ( t 1 , t 2 ) 的正交函数集. 在区间 (t1,t2) ( t 1 , t 2 ) 内相互正交的 n n 个函数构成正交信号空间.
信号分析中的两个常见正交函数集:
三角函数
指数函数
{
ejnΩt}(n=0,±1,±2,...) { e j n Ω t } ( n = 0 , ± 1 , ± 2 , . . . )
帕萨瓦尔方程(判定信号函数可分解为正交函数的依据)
∫t2t1f2(t)dt=∑j=1∞C2jKj ∫ t 1 t 2 f 2 ( t ) d t = ∑ j = 1 ∞ C j 2 K j
2. 傅里叶级数
周期信号的傅里叶变换结果是离散的
- 傅里叶变换的前提:
函数 f(t) f ( t ) 满足狄里赫利条件
- 函数在任意有限区间内连续, 或只有有限个第一类间断点;
- 在一个周期内, 函数有有限个极大值或极小值.
周期信号的傅里叶展开(傅里叶级数的三角函数形式)
f(t)=a02+a1cos(Ωt)+a2cos(Ωt)+...+b1sin(Ωt)+b2sin(Ωt)+...+=a02+∑n=1∞ancos(nΩt)+∑n=1∞bnsin(nΩt)(5)(6) (5) f ( t ) = a 0 2 + a 1 cos ( Ω t ) + a 2 cos ( Ω t ) + . . . + b 1 sin ( Ω t ) + b 2 sin ( Ω t ) + . . . + (6) = a 0 2 + ∑ n = 1 ∞ a n cos ( n Ω t ) + ∑ n = 1 ∞ b n sin ( n Ω t )
上式中 an,bn a n , b n 称为傅里叶系数. 傅里叶系数的求解方法如下式:
anbn=2T∫T2−T2f(t)cos(nΩt)dt,n=0,1,2,...=2T∫T2−T2f(t)sin(nΩt)dt,n=1,2,...(7)(8) (7) a n = 2 T ∫ − T 2 T 2 f ( t ) cos ( n Ω t ) d t , n = 0 , 1 , 2 , . . . (8) b n = 2 T ∫ − T 2 T 2 f ( t ) sin ( n Ω t ) d t , n = 1 , 2 , . . .
式中 T T 为函数的周期, 是角频率
将上述展开式的同频率项合并, 可得到下述形式:
f(t)=A02+A1cos(Ωt+ϕ1)+A2cos(2Ωt+ϕ2)+...=A02+∑n=1∞Ancos(nΩt+ϕn)(9)(10) (9) f ( t ) = A 0 2 + A 1 cos ( Ω t + ϕ 1 ) + A 2 cos ( 2 Ω t + ϕ 2 ) + . . . (10) = A 0 2 + ∑ n = 1 ∞ A n cos ( n Ω t + ϕ n )
其中, 上式各系数与原式的关系满足:
A0Anϕn=a0=