信号与线性系统分析

时域

奇异函数信号

冲激函数
冲激偶函数

txδ(x)dx=ϵ(t) ∫ − ∞ t x δ ( x ) d x = ϵ ( t )

使用分部积分法可求解

零状态响应

LTI系统的零状态响应的线性性质、时不变性和微分性质

设激励为 f() f ( ⋅ ) , 零状态响应为 y() y ( ⋅ )

y()=T[f()] y ( ⋅ ) = T [ f ( ⋅ ) ]

线性性质
T[af()]=aT[f()] T [ a f ( ⋅ ) ] = a T [ f ( ⋅ ) ]

时不变性
T[f(ttd)]T[f(kkd)]=y(ttd)=y(kkd)(1)(2)} (1) T [ f ( t − t d ) ] = y ( t − t d ) (2) T [ f ( k − k d ) ] = y ( k − k d ) }

微分性质(只有连续信号才有微分)
T[df(t)dt]=dy(t)dt T [ d f ( t ) d t ] = d y ( t ) d t

变换域

1. 变换域的定义(时域到变换域)

2. 复频域的收敛域

3. 变换域与时域的性质

  • 线性
  • 尺度变换(变量数乘)
  • 时移/频移(变量加减常量)
  • 时域微积分
  • 频域微积分
  • 时域卷积
  • 频域卷积
  • 复频域:初值定理/终值定理

4. 逆变换

5. 变换域分析

  • 微分方程的变换解
  • 系统函数
  • 系统框图

傅里叶变换

1. 正交函数(集)

定义:

​ 如有 n n 个函数 ϕ 1 ( t ) , ϕ 2 ( t ) , . . . , ϕ n ( t ) 构成一个函数集, 当这些函数在区间 (t1,t2) ( t 1 , t 2 ) 内满足:

t2t1ϕi(t)ϕj(t)={ 0Ki0,ij,i=j(3)(4) ∫ t 1 t 2 ϕ i ( t ) ϕ j ( t ) = { (3) 0 , i ≠ j (4) K i ≠ 0 , i = j

​ 式中 Ki K i 为常数, 则称此函数集为在区间 (t1,t2) ( t 1 , t 2 ) 的正交函数集. 在区间 (t1,t2) ( t 1 , t 2 ) 内相互正交的 n n 个函数构成正交信号空间.

信号分析中的两个常见正交函数集:

三角函数

{ 1 , cos ( Ω t ) , cos ( 2 Ω t ) , . . . , cos ( m Ω t ) , . . . , sin ( Ω t ) , sin ( 2 Ω t ) , . . . , s i n ( n Ω t ) , . . . }

指数函数

{ ejnΩt}(n=0,±1,±2,...) { e j n Ω t } ( n = 0 , ± 1 , ± 2 , . . . )

帕萨瓦尔方程(判定信号函数可分解为正交函数的依据)

t2t1f2(t)dt=j=1C2jKj ∫ t 1 t 2 f 2 ( t ) d t = ∑ j = 1 ∞ C j 2 K j

2. 傅里叶级数

周期信号的傅里叶变换结果是离散的

  • 傅里叶变换的前提:
    ​ 函数 f(t) f ( t ) 满足狄里赫利条件
    1. 函数在任意有限区间内连续, 或只有有限个第一类间断点;
    2. 在一个周期内, 函数有有限个极大值或极小值.
周期信号的傅里叶展开(傅里叶级数的三角函数形式)

f(t)=a02+a1cos(Ωt)+a2cos(Ωt)+...+b1sin(Ωt)+b2sin(Ωt)+...+=a02+n=1ancos(nΩt)+n=1bnsin(nΩt)(5)(6) (5) f ( t ) = a 0 2 + a 1 cos ⁡ ( Ω t ) + a 2 cos ⁡ ( Ω t ) + . . . + b 1 sin ⁡ ( Ω t ) + b 2 sin ⁡ ( Ω t ) + . . . + (6) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ ( n Ω t ) + ∑ n = 1 ∞ b n sin ⁡ ( n Ω t )

上式中 an,bn a n , b n 称为傅里叶系数. 傅里叶系数的求解方法如下式:

anbn=2TT2T2f(t)cos(nΩt)dt,n=0,1,2,...=2TT2T2f(t)sin(nΩt)dt,n=1,2,...(7)(8) (7) a n = 2 T ∫ − T 2 T 2 f ( t ) cos ⁡ ( n Ω t ) d t , n = 0 , 1 , 2 , . . . (8) b n = 2 T ∫ − T 2 T 2 f ( t ) sin ⁡ ( n Ω t ) d t , n = 1 , 2 , . . .

式中 T T 为函数的周期, Ω = 2 π T 是角频率

将上述展开式的同频率项合并, 可得到下述形式:

f(t)=A02+A1cos(Ωt+ϕ1)+A2cos(2Ωt+ϕ2)+...=A02+n=1Ancos(nΩt+ϕn)(9)(10) (9) f ( t ) = A 0 2 + A 1 cos ⁡ ( Ω t + ϕ 1 ) + A 2 cos ⁡ ( 2 Ω t + ϕ 2 ) + . . . (10) = A 0 2 + ∑ n = 1 ∞ A n cos ⁡ ( n Ω t + ϕ n )

其中, 上式各系数与原式的关系满足:
A0Anϕn=a0=
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值