信号与线性系统知识点整理1-2

信号

信号常可表示为时间函数(或序列),该函数的图像称为信号的波形。在讨论信号相关问题时,“信号”与“函数(或序列)”两个词常互相通用。
如果信号可以用一个确定的时间函数(或序列)表示,就称其为确定信号(或规则信号)。

连续信号和离散信号

连续时间信号

  在连续时间范围内 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)有定义的信号称为连续时间信号,简称连续信号。
“连续”是指函数的定义域——时间(或其他量)是连续的,至于信号的值域可以是连续的也可以是不连续的

离散时间信号

仅在一些离散的瞬间才有定义的信号称为离散时间信号,简称离散信号。
“离散”是指信号的定义域——时间(或其他量)是离散的,它只取某些规定的值。

周期信号和非周期信号

  周期信号是定义在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)区间,每隔一定时间 T T T(或整数 N N N),按相同规律重复变化的信号。
  连续周期信号可表示为
f ( t ) = f ( t + m T ) , m = 0 , ± 1 , ± 2 , ⋅ ⋅ ⋅ f(t)=f(t+mT),m=0,\pm1,\pm2,··· f(t)=f(t+mT),m=0,±1,±2,
  离散周期信号可表示为
f ( k ) = f ( k + m N ) , m = 0 , ± 1 , ± 2 , ⋅ ⋅ ⋅ f(k)=f(k+mN),m=0,\pm1,\pm2,··· f(k)=f(k+mN),m=0,±1,±2,
满足以上关系式的最小 T T T(或 N N N)值称为该信号的重复周期,简称周期。
对于正弦序列(或余弦序列)
f ( k ) = sin ⁡ ( β k ) = sin ⁡ ( β k + 2 m π ) = sin ⁡ [ β ( k + m 2 π β ) ] = sin ⁡ [ β ( k + m N ) ] , m = 0 , ± 1 , ± 2 , ⋅ ⋅ ⋅ f(k)=\sin(\beta k)=\sin(\beta k+2m\pi)=\sin\left[\beta\left(k+m\frac{2\pi}{\beta}\right)\right]=\sin[\beta(k+mN)],m=0,\pm1,\pm2,··· f(k)=sin(βk)=sin(βk+2mπ)=sin[β(k+mβ2π)]=sin[β(k+mN)],m=0,±1,±2,
式中 β \beta β称为正弦序列的数字角频率(或角频率),单位为rad。
仅当 2 π β \displaystyle\frac{2\pi}{\beta} β2π为整数时,正弦序列才具有周期。当 2 π β \displaystyle\frac{2\pi}{\beta} β2π为有理数时,正弦序列仍具有周期性,但其周期为 N = M 2 π β N=M\displaystyle\frac{2\pi}{\beta} N=Mβ2π(N,M均为无公因子的整数)。当 2 π β \displaystyle\frac{2\pi}{\beta} β2π为无理数时,该序列不具有周期性。
对于周期牢记定义即可,不管连续还是离散的, T T T N N N都必须是整数

实信号和复信号

  物理可实现的信号常常是时间 t t t(或 k k k)的实函数(或序列),其在各时刻的函数(或序列)值为实数,例如单边指数信号、正弦信号等,称为实信号
  函数(或序列)值为复数的信号称为复信号,最常用的是复指数信号。连续信号的复指数信号可表示为
f ( t ) = e s t f(t)=e^{st} f(t)=est t ∈ ( − ∞ , + ∞ ) t\in(-\infty,+\infty) t(,+)
式中复变量 s = σ + j ω s=\sigma+j\omega s=σ+jω σ \sigma σ s s s的实部,记作 R e [ s ] Re[s] Re[s] ω \omega ω s s s的虚部,记作 I m [ s ] Im[s] Im[s]
根据欧拉公式
f ( t ) = e σ t cos ⁡ ( ω t ) + j e σ t sin ⁡ ( ω t ) f(t)=e^{\sigma t}\cos(\omega t)+je^{\sigma t}\sin(\omega t) f(t)=eσtcos(ωt)+jeσtsin(ωt)
可见,一个复指数信号可分解为实、虚两部分,即
R e [ f ( t ) ] = e σ t cos ⁡ ( ω t ) Re[f(t)]=e^{\sigma t}\cos(\omega t) Re[f(t)]=eσtcos(ωt)
I m [ f ( t ) ] = e σ t sin ⁡ ( ω t ) Im[f(t)]=e^{\sigma t}\sin(\omega t) Im[f(t)]=eσtsin(ωt)
[感觉这里知识有点杂,暂时搁置]

能量信号和功率信号

  信号 f ( t ) f(t) f(t)在单位电阻上的瞬时功率为 ∣ f ( t ) ∣ 2 |f(t)|^2 f(t)2,在区间 − a < t < a -a<t<a a<t<a的能量为
∫ − a a ∣ f ( t ) ∣ 2 d t \int_{-a}^{a}|f(t)|^2dt aaf(t)2dt
在区间 − a < t < a -a<t<a a<t<a的平均功率为
1 2 a ∫ − a a ∣ f ( t ) ∣ 2   d t \frac{1}{2a}\int_{-a}^{a}|f(t)|^2\,dt 2a1aaf(t)2dt
信号能量定义为在区间 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)中信号 f ( t ) f(t) f(t)的能量,用字母 E E E表示,即
E = d e f lim ⁡ a → ∞ ∫ − a a ∣ f ( t ) ∣ 2   d t E\xlongequal{def}\lim\limits_{a\to \infty} \int_{-a}^{a}|f(t)|^2\,dt Edef alimaaf(t)2dt
信号功率定义为在区间 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)中信号 f ( t ) f(t) f(t)的平均功率,用字母 P P P表示,即
P = = d e f lim ⁡ a → ∞ 1 2 a ∫ − a a ∣ f ( t ) ∣ 2 d t P=\xlongequal{def}\lim\limits_{a\to \infty}\frac{1}{2a}\int_{-a}^{a}|f(t)|^2dt P=def alim2a1aaf(t)2dt
  若信号 f ( t ) f(t) f(t)的能量有界(即 0 < E < ∞ 0<E<\infty 0<E<,这时 P = 0 P=0 P=0),则称其为能量有限信号,简称为能量信号。若信号 f ( t ) f(t) f(t)的功率有界(即 0 < P < ∞ ) 0<P<\infty) 0<P<),这时 E = ∞ E=\infty E=),则其称为功率有限信号,简称功率信号.
  离散信号,序列 f ( k ) f(k) f(k)的能量定义为
E = d e f lim ⁡ N → ∞ ∑ k = − N N ∣ f ( k ) ∣ 2 E\xlongequal{def}\lim\limits_{N\to \infty}\sum_{k=-N}^N|f(k)|^2 Edef Nlimk=NNf(k)2
序列 f ( k ) f(k) f(k)的功率定义为
P = d e f lim ⁡ N → ∞ 1 2 N + 1 ∑ k = − N N ∣ f ( k ) ∣ 2 P\xlongequal{def}\lim\limits_{N\to \infty}\frac{1}{2N+1}\sum_{k=-N}^N|f(k)|^2 Pdef Nlim2N+11k=NNf(k)2

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值