几种常见的CNN网络结构对比

1.LeNet

C1层为卷积层,kernel size = 5 * 5,步长为1,无填充,生成6个feature map

S2层为降采样层,kernel size为2*2,长和宽的步长都为2,无填充。

C3层为卷积层,kernel size为5*5,步长为1,生成16个feature map。

S4层为降采样层,kernel size为2*2,长和宽的步长均为2,无填充

C5为卷积层,kernel size为5*5,步长为1,无填充。全连接生成120个feature map

F6层为全连接层

output层

应用:

LeNet5诞生于1994年,是最早的卷积神经网络之一。1998年,Yann LeCun,Leon Bottou,Yoshua Bengio和Patrick Haffner在发表的论文中回顾了应用于手写字符识别的各种方法,并用标准手写数字识别基准任务对这些模型进行了比较,结果显示卷积神经网络的表现超过了其他所有模型。

现在在研究中已经很少将LeNet使用在实际应用上,对卷积神经网络的设计往往在某个或多个方向上进行优化,如包含更少的参数(以减轻计算代价)、更快的训练速度、更少的训练数据要求等。

2.AlexNet

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微雨盈萍cbb

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值