1.LeNet
C1层为卷积层,kernel size = 5 * 5,步长为1,无填充,生成6个feature map
S2层为降采样层,kernel size为2*2,长和宽的步长都为2,无填充。
C3层为卷积层,kernel size为5*5,步长为1,生成16个feature map。
S4层为降采样层,kernel size为2*2,长和宽的步长均为2,无填充
C5为卷积层,kernel size为5*5,步长为1,无填充。全连接生成120个feature map
F6层为全连接层
output层
应用:
LeNet5诞生于1994年,是最早的卷积神经网络之一。1998年,Yann LeCun,Leon Bottou,Yoshua Bengio和Patrick Haffner在发表的论文中回顾了应用于手写字符识别的各种方法,并用标准手写数字识别基准任务对这些模型进行了比较,结果显示卷积神经网络的表现超过了其他所有模型。
现在在研究中已经很少将LeNet使用在实际应用上,对卷积神经网络的设计往往在某个或多个方向上进行优化,如包含更少的参数(以减轻计算代价)、更快的训练速度、更少的训练数据要求等。
2.AlexNet