一、LeNet5的模型特性
1.卷积网络使用一个3层的序列组合:卷积、下采样(池化)、非线性映射(LeNet-5最重要的特 性,奠定了目前深层卷积网络的基础) 使用卷积提取空间特征 使用映射的空间均值进行下采样
2.使用tanh或sigmoid进行非线性映射
3.多层神经网络(MLP)作为最终的分类器
4.层间的稀疏连接矩阵以避免巨大的计算开销

二、AlexNet的模型特性
1.所有卷积层都使用ReLU作为非线性映射函数,使模型收敛速度更快
2.在多个GPU上进行模型的训练,不但可以提高模型的训练速度,还能提升数据的使用规模
3.使用LRN对局部的特征进行归一化,结果作为ReLU激活函数的输入能有效降低错误率
4.重叠最大池化(overlapping max pooling),即池化范围z与步长s存在关系z>s,避免平均池化(average pooling)的平均效应
5.使用随机丢弃技术(dropout)选择性地忽略训练中的单个神经元,避免模型的过拟合

三、ZFNet的模型特性
1.

最低0.47元/天 解锁文章
747

被折叠的 条评论
为什么被折叠?



