【算法思考】Radial basis function interpolation (RBF)插值法

插值是通过已知采样点估算新点函数值的技术,Radialbasisfunction是一种常用的插值方法。它基于距离的函数,如高斯函数,通过计算权重来建立插值模型。权重的计算通常涉及线性回归,确保在采样点上的精确拟合。代码示例展示了如何使用numpy和PyTorch实现RBF插值。即使采样点稀疏,该方法也能提供良好的插值结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是插值

假设我们有n个采样点,这些采样点的维度都是 k 维的, 记做 X = { x 1 , x 2 , ⋯ x n } \bold{X} = \{\bold{x_1, x_2, \cdots x_n}\} X={ x1,x2,xn}, 对于每个 x i \bold{x_i} xi 都对应一个函数值 y i y_i yi 。如果给一个新的采样点 x ∉ X \bold{x}\notin\bold{X} x/X, 如何计算或估计出其对应的函数值 y y y, 就是插值要解决的问题。有时候我们也会遇到 y y y 是一个向量的情况,不过可以通过建立多个插值函数来解决这个问题。

如果采样点 x i \bold{x_i} xi 都是 1 维的,我们可以采样一种非常简单的方式,即分段线性进行建模。下面举个例子:

我们有采样点 x 0 = 0 , y 0 = 0 , x 1 = 1 , y 1 = 1 x_0=0, y_0=0, x_1=1, y_1=1 x0=0,y0=0,x1=1,y1=1, 可以建模为 y = ∣ x − x 0 ∣ ∣ x − x 0 ∣ + ∣ x − x 1 ∣ ∗ y 0 + ∣ x − x 1 ∣ ∣ x − x 0 ∣ + ∣ x − x 1 ∣ ∗ y 1 y = \frac{|x-x_0|}{|x-x_0|+|x-x_1|} * y_0 +\frac{ |x - x_1|}{|x-x_0|+|x-x_1|} * y_1 y=xx0+xx1xx0y0+xx0+xx1xx1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值