DeepSeek高效提示词设计

1. 如何使用DeepSeek

1.1 关键原则

  • 模型选择:根据任务类型选择合适的模型(表格为举例,推理模型即R1,通用模型即不选择深度思考的V3模型)

1.2 提示词设计

  • 推理模型:简洁指令,聚焦目标,不需要结构性的提示词,让模型自己推理思考。
  • 通用模型:结构化、补偿性引导,需要分步进行并提供具体实例。
  • CoT(思维链)拓展
    • 简单解释:指令+逻辑依据+示例;
    • 指令:用于描述问题并告知大模型输出格式;
    • 逻辑依据:即中间推理过程,可以包含问题的解决方案、推理步骤以及与问题相关的任何外部知识。
    • 示例:以少量样本的方式为大模型提供输入输出的基本格式,每一个示例都包含:问题、推理过程与答案。
    • 说人话版:记得R1的思考过程吗?使用通用模型的时候把这样的思考过程告诉AI,然后丢几个范例给它看,让它按照范例格式生成你需要的新的主题内容。
  • 部分提示词策略示例
  • 官方文档:Prompt Library | DeepSeek API Docs

2. 高效提示词原则

2.1 三大原则

  • 清晰性:首要原则,明确任务目标;
  • 结构化:分步骤与逻辑层次,通过将任务分解为多个子任务,通过逐步完成步骤最终实现整体目标;
  • 上下文控制:限定范围与角色,通过多次生成打磨出更符合预期的输出。

2.2 清晰性:明确任务目标

2.2.1 什么是清晰性?
  • 明确的任务描述:明确指出需要完成的任务是什么;
  • 具体的要求:包含具体的任务要求,如格式、内容、长度等;
  • 避免歧义:避免使用模糊或有多重含义的词汇,确保模型不会产生误解。
2.2.2 如何实现?
  • 明确任务目标:例如,任务是生成一篇短视频文案,提示词应明确指出主题、长度、风格等要求。
  • 具体化要求:例如,任务是生成一个短视频脚本,需要时长为2分钟,则提示词应明确限定视频的时长要求。
  • 避免模糊词汇:例如,避免使用“可能”、“大概”等词汇。
2.2.3 案例举例

案例1:模糊提示词

生成一个关于美食的短视频脚本

分析:过于模糊的任务目标,基本无法生成符合预期的内容 。

案例2:清晰提示词

生成一个关于美食的短视频脚本,主题为“擂椒拌饭”,
要求时长2分钟,开头要有钩子吸引客户,内容有梗、有网感,结尾有金句并能让人印象深刻。

分析:我瞎写的,建议你自己根据原理来写(bushi)

2.3 结构化:分步骤与逻辑层次

2.3.1 什么是结构化?
  • 任务分解:将复杂任务分解为多个子任务。
  • 逻辑层次:按照逻辑层次组织子任务,确保每个步骤都有明确的输入和输出。
  • 逐步完成:模型能够逐步完成每个子任务,最终实现整体目标。
2.3.2 如何实现?
  • 任务分解:例如,任务是生成一篇关于美食的短视频脚本,可以将任务分解为生成标题、生成主体、生成结尾等子任务。
  • 逻辑层次:例如,先根据主题生成主体,根据主体生成互动性结尾,最后根据主体和结尾生成创意性标题
2.3.3 案例举例
1. 生成一个主题是“擂椒拌饭”的短视频脚本的主体部分,时长为90秒。
2. 根据主体部分生成互动性结尾,吸引顾客留存,时长为30秒。
3. 根据主体部分和结尾生成标题,要求具有创意性和幽默感,字数不超过15字。

分析:想吃擂椒拌饭了(bushi),举例都是我瞎写的哈

2.4 上下文控制:限定范围与角色

2.4.1 什么是上下文控制?
  • 限定范围:明确任务的范围,确保模型生成的内容在指定范围内。
  • 限定角色:明确模型的角色,确保模型生成的输出符合角色要求。
  • 一致性:确保模型生成的内容与任务背景和限制一致。
2.4.2 如何实现?
  • 限定范围:例如,任务是生成一篇关于美食的短视频脚本,可以限定脚本的主题为“擂椒拌饭外卖商家的宣传短视频脚本”。
  • 限定角色:例如,如果模型的角色是“资深短视频运营剪辑师”,生成内容将更贴合要求。
2.4.3 案例举例(是的我又要乱编了)
1. 你是热门短视频脚本撰写专家,你有很多创意,掌握各种网络流行梗blabla
2. 这是你输出的脚本需要遵循的格式(喂范例)
3. 生成一个主题为“擂椒拌饭真好吃”的外卖商家的宣传短视频脚本主体部分,要求xxx,时长xx秒
4. 生成脚本的结尾部分,要求xxx,时长xx秒
5. 根据主体和结尾生成5个爆款标题,并说明技巧
6. 模型生成脚本后,进行多次优化修改,例如:优化一下主体部分,看看怎么更吸引人

3. 常见陷阱

  • 缺乏迭代:过度复杂的初始化提示语、忽视对模型输出的分析和反馈。
  • 过度指令与模糊指令:提示语过于长或过于简短、意图不明确。
  • 应对策略
    • 从基础提示语开始,逐步添加细节和要求;
    • 明确要求优先级,突出重要关键点;
    • 要求模型对输出内容进行自我评估,并提供改进建议;
    • 多轮对话。

内容概要:该文档《DeepSeek300 多个终极提示词指令》汇总了适用于各种任务的300多个DeepSeek-R1提示词模板,涵盖75多个类别。通过这些提示词,用户可以精确地引导AI进行诸如、编辑、编码、数据分析等一系列工,从而大幅提高工效率并获得高质量的回答。特别强调了如何更好地与AI交互,通过具体的提示词而非模糊的问题获得精确解答。提供了丰富的场景应用示例,如内容创、技术开发、商务策略等领域的即插即用提示词。 适合人群:面向所有希望通过AI辅助提高生产力的用户,尤其是开发者、家、创业者、产品经理以及其他需要经常借助AI解决问题的专业人士或学生。 使用场景及目标:主要用于帮助用户在各种专业任务中更有效地利用AI工具。具体场景包括但不限于撰文案、创建代码、进行数据分析、制定市场营销策略等。主要目的是提高用户与AI间的沟通效率,使得AI能按照用户的意图准确地执行任务,并且帮助用户节省时间和精力。 其他说明:文档不仅提供了详细的提示词,还通过案例展示了提示词的实际应用。更重要的是强调,使用这些提示词不仅仅是为了获取更佳的结果,更是为了让使用者能够‘教会’AI更贴近自己需求地思考。此外,鼓励用户在实践中不断创新和完善提示词库,以进一步提升自身的工效能。
### 关于 DeepSeek 设计指南和最佳实践 #### 使用场景优化 为了使 DeepSeek-V2 更加高效设计者应考虑具体的应用场景来调整模型参数和输入格式。例如,在自然语言处理任务中,针对特定行业术语的语料库可以显著提高理解准确性[^1]。 #### 持续迭代更新 鼓励使用者基于实际应用反馈对 DeepSeek 进行持续性的调优与扩展。这不仅有助于发现潜在的功能缺陷,还能进一步挖掘该平台未被利用的能力,从而促进AI技术的进步和发展。 #### 开发环境搭建 对于希望集成 DeepSeek Coder 到现有工流中的团队来说,合理的硬件配置以及兼容的操系统版本至关重要。推荐采用多核处理器配合充足内存资源,并确保安装最新版驱动程序和支持包以保障稳定运行;同时也要注意选择适合项目需求的语言编译器及IDE插件等辅助工具[^2]。 #### 数据集准备 预训练阶段所使用的高质量多样化数据源决定了最终产出效果的好坏程度。因此收集广泛覆盖目标领域特征的数据样本并对其进行清洗标注是一项必不可少的工环节。此外还需关注版权归属问题以免引发法律纠纷风险[^3]。 ```python # Python代码示例:加载预训练模型 from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "deepseek-vl" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) text = "这是一个测试句子。" inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) print(outputs.logits.softmax(dim=-1)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值