第三周【任务1】学习损失函数(svm多分类损失函数与softmax)

7 损失函数

一、学习内容

  1. 第三讲损失函数部分,主要介绍了 svm多分类损失函数与softmax函数,以例子详细说明如何使用他们来做完成图像分类任务。指出了svm多分类损失函数存在多解的问题,讲解了使用正则项来解决多解问题。

  2. 学习的时候需要重点学习svm多分类损失函数与softmax的数学表达式,softmax的作用以及它的最大似然函数,思考Hinge loss与 Softmax的区别

1.SVM
1.1 思考的问题

Q1: 计算car对应的损失时,稍微改变car的分数会有什么结果?
在这里插入图片描述
Q2:损失函数的最小值、最大值分别为多少?
如果所有类别都计算正确,那么损失为0,最大值可以为无穷大。

Q3:权重随机初始化,得到的分数均接近于0,此时loss值是多少?
loss等于分类数n-1
在这里插入图片描述
Q4:如果计算所有样本间的分数差包括样本本身的分数,那么损失函数会怎么变化?
在这里插入图片描述
Q5:如果使用mean而不是sum会有什么影响?
基本没有影响,仅仅只是缩放了loss的值。

Q6:如果我们把样本分数差做了平方会怎么样?
这就是计算另一种损失函数了

1.2 存在的问题
  • 当loss=0的时候,w的值不唯一
    在这里插入图片描述
    Eg.
x = np.array([1,0,1,1])
w1 = np.array([[2,1,1,1],[1,1,0,0]])
w2 = np.array([[4,2,0,2],[1,1,0,0]])
s1 = np.matmul(w1, x) #array([4, 1])
s2 = np.matmul(w2, x) #array([6, 1])

假设分类正确值为第一类,s1和s2的第一个值分数都远大于第二个(4>1,6>1),因此两个的loss都为0,但是两个w不相等

该如何解决这个问题呢?

  • 解决方法:可以添加正则项
    在这里插入图片描述
    给w1和w2分别计算L2正则化:
    w1的二范数为: 2 2 + 1 2 + 1 2 + 1 2 + 1 2 + 1 2 2 = 3 \sqrt[2]{{{2^2}{\rm{ + }}{{\rm{1}}^2}{\rm{ + }}{{\rm{1}}^2}{\rm{ + }}{{\rm{1}}^2}{\rm{ + }}{{\rm{1}}^2}{\rm{ + }}{{\rm{1}}^2}}}{\rm{ = }}3 222+12+12+12+12+12 =3
    w2的范数为: 4 2 + 2 2 + 0 2 + 2 2 + 1 2 + 1 2 2 = 5.09 \sqrt[2]{{{4^2}{\rm{ + }}{{\rm{2}}^2}{\rm{ + }}{{\rm{0}}^2}{\rm{ + }}{{\rm{2}}^2}{\rm{ + }}{{\rm{1}}^2}{\rm{ + }}{{\rm{1}}^2}}}{\rm{ = }}5.09 242+22+02+22+12+12 =5.09
    优化的目的是使 L ( w ) L(w) L(w)最小,因此上式两项都要最小,通常正则项是一范数或者二范数,要使 λ R ( w 1 ) \lambda R(w_1) λR(w1)最小,所以选择 w 1 w_1 w1

二分类SVM的推导 是面试中常考的内容

2.Softmax

使用交叉熵计算loss,进行优化
使用交叉熵损失时,label为one-hot形式
在这里插入图片描述

2.1 KL散度:

KL散度可以衡量两个分布的相似度,假设两个分布为p,q
公式:本例指的是标签和score之间的相似性
在这里插入图片描述
可以变形为:标签的one-hot形式:0–>1000000000
ee 在这里插入图片描述
这里的 p ( x i ) p(x_i) p(xi)是one-hot形式, q ( x i ) q(x_i) q(xi)是score
**Eg.**以猫咪 p ( x 0 ) p(x_0) p(x0)为例:
已知 p ( x 0 ) = [ 1 , 0 , 0 ] , p(x_0)=[1,0, 0 ], p(x0)=[1,0,0], q ( x 0 ) = [ 0.13 , 0.87 , 0.00 ] q(x_0)=[0.1 3,0.87,0.00] q(x0)=[0.13,0.87,0.00],
那么, H ( p ( x 0 ) ) = 1 ∗ l o g ( 1 ) + 0 ∗ l o g ( 0 ) + 0 ∗ l o g ( 0 ) = 0 H(p(x_0))=1*log(1)+0*log(0)+0*log(0)=0 H(p(x0))=1log(1)+0log(0)+0log(0)=0
在这里插入图片描述
起作用的只有本身对应的这一项
因此,简化为如下式子,即交叉熵可以衡量两个分布的相似性。
在这里插入图片描述
一般情况下 p ( x i ) = 1 p(x_i)=1 p(xi)=1,进一步简化为
在这里插入图片描述
与最大似然函数相似:
在这里插入图片描述

打卡内容:

  1. Hinge Loss 表达式

  2. 加正则的目的
    防止模型过拟合,简化函数表达式

  3. Softmax 与交叉熵损失公式,分析交叉熵损失的最大值与最小值(softmax 求导要会)

  4. Hinge loss与Softmax的区别

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值