原文:Multi-class SVM Loss
作者: Adrian Rosebrock
翻译: KK4SBB 责编:何永灿
几个星期之前,我们讨论了线性分类和参数化学习的概念。这类学习方法使我们能够输入一组数据和类别标签,然后从中学到一个从输入值到预测值的映射关系,而我们只需要定义一组参数并优化这些参数。
我们本篇线性分类器教程主要关注评分函数的概念和它的用法。但是,为了真的“学会”输入值和类别标签的映射关系,我们需要讨论下面两个重要的概念:
- 损失函数
- 优化方法
在本周和下周的文章中,我们会讨论两类常见的损失函数,它们在机器学习、神经网络和深度学习算法中都被应用:
- 多类SVM损失
- 交叉熵(用于Softmax分类器/多项式逻辑回归)
接下来,我们就讨论多类SVM损失。
多类SVM损失
用最简单的方式来解释,损失函数就是用来衡量一个预测器在对输入数据进行分类预测时的质量好坏。
损失值越小,分类器的效果越好,越能反映输入数据与输出类别标签的关系(虽然我们的模型有时候会过拟合——这是由于训练数据被过度拟合,导致我们的模型失去了泛化能力)。
相反,损失值越大,我们需要花更多的精力来提升模型的准确率。就参数化学习而言,这涉及到调整参数,比如需要调节权重矩阵W或偏置向量B,以提高分类的精度。确切地说,我们如何去更新这些参数属于优化问题,我们这一系列的教程的后续篇幅将会覆盖这些话题。
多类SVM损失背后的数学问题
在阅读完