一、张量拼接与切分
1.1 torch.cat()
功能:将张量按维度dim进行拼接
- tensor:张量序列
- dim:要拼接的维度
举例:
t = torch.ones(2,3)
t_0 = torch.cat([t,t],dim=0)
t_1 = torch.cat([t,t,t],dim=1)
print('t_0:{} shape:{}\nt_1:{} shape:{}'.format(t_0,t_0.shape,t_1,t_1.shape))
结果:
t_0:tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]]) shape:torch.Size([4, 3])
t_1:tensor([[1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1.]]) shape:torch.Size([2, 9])
1.2 torch.stack()
功能:在新创建的维度dim进行拼接
t = torch.ones((2,3))
# t只有0,1两个维度,会在2上创建一个新的维度
t_stack = torch.stack([t,t],dim = 2)
print('\nt_stack:{} shape:{}'.format(t_stack,t_stack.shape))
t_stack:tensor([[[1., 1.],
[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.],
[1., 1.]]]) shape:torch.Size([2, 3, 2])
如果在dim=0上拼接:
t_stack = torch.stack([t,t],dim = 0)
t_stack:tensor([[[1., 1., 1.],
[1., 1., 1.]],
[[1., 1., 1.],
[1., 1., 1.]]]) shape:torch.Size([2, 2, 3])
总结:cat不会拓展张量维度,stack会拓展张量维度
1.3 torch.chunk()
功能:将张量按维度dim进行平均切分
返回值:张量列表
注意:若不能整除,最后一份张量小于其他张量
- input:要切分的张量
- chunks:要切分的份数
- dim:要切分的维度
举例:
a = torch.ones((2,5))
list_of_tensors = torch.chunk(a,dim=1,chunks=2)
for idx,t in enumerate(list_of_tensors):
print('第{}个张量:{},shape is {}'.format(idx+1,t,t.shape))
结果:
第1个张量:tensor([[1., 1., 1.],
[1., 1., 1.]]),shape is torch.Size([2, 3])
第2个张量:tensor([[1., 1.],
[1., 1.]]),shape is torch.Size([2, 2])
chunks = 3,计算方式:7/3=2.x,向上取整得3,两组为3,剩下的为一组
a = torch.ones((2,7))
list_of_tensors = torch.chunk(a,dim=1,chunks=3)
第1个张量:tensor([[1., 1., 1.],
[1., 1., 1.]]),shape is torch.Size([2, 3])
第2个张量:tensor([[1., 1., 1.],
[1., 1., 1.]]),shape is torch.Size([2, 3])
第3个张量:tensor([[1.],
[1.]]),shape is torch.Size([2, 1])
1.4 torch.split()
功能:将张量按维度dim进行切分
返回值:张量列表
- tensor: 要切分的张量
- split_size_or_sections : 为int时,表示每一份的长度;为list时,按list元素切分
- dim : 要切分的维度
举例:
split_size_or_sections为list时
t = torch.ones((2,5))
list_of_tensors = torch.split(t, [2,1,2], dim=1)#list之和要等于dim维度的长度
# list_of_tensors = torch.split(t,2,dim=1)
for idx, t in enumerate(t,2,dim=1):
print('第{}个张量:{},shape is {}'.format(idx+1,t.shape))
结果:
第1个张量:tensor([[1., 1.],
[1., 1.]]),shape is torch.Size([2, 2])
第2个张量:tensor([[1.],
[1.]]),shape is torch.Size([2, 1])
第3个张量:tensor([[1., 1.],
[1., 1.]]),shape is torch.Size([2, 2])
split_size_or_sections为int时:
list_of_tensors = torch.split(t,2,dim=1)
结果:
第1个张量:tensor([[1., 1.],
[1., 1.]]),shape is torch.Size([2, 2])
第2个张量:tensor([[1., 1.],
[1., 1.]]),shape is torch.Size([2, 2])
第3个张量:tensor([[1.],
[1.]]),shape is torch.Size([2, 1])
二、张量索引
2.1 torch.split()
功能:在维度dim上,按index索引数据
返回值:依index索引数据拼接的张量
- input: 要索引的张量
- dim: 要索引的维度
- index : 要索引数据的序号
举例:
t = torch.randint(0, 9, size=(3,3))
idx = torch.tensor([0,2], dtype=torch.long)#必须是long
t_select = torch.index_select(t,dim=0,index=idx)
print('t:\n{}\nt_select:\n{}'.format(t,t_select))
结果:
t:
tensor([[1, 8, 4],
[6, 3, 4],
[3, 3, 5]])
t_select:
tensor([[1, 8, 4],
[3, 3, 5]])
2.2 torch.masked_select()
功能:按mask中的True进行索引
返回值:一维张量
- input: 要索引的张量
- mask: 与input同形状的布尔类型张量
举例:
t = torch.randint(0,9,size=(3,3))
#t>=5的元素返回true
mask = t.ge(5) #ge is mean greater than or equal/
t_select = torch.masked_select(t,mask)
print('t:\n{}\nmask:\n{}\nt_select:\n{}'.format(t,mask,t_select))
结果:
tensor([[5, 6, 1],
[6, 3, 2],
[0, 2, 8]])
mask:
tensor([[ True, True, False],
[ True, False, False],
[False, False, True]])
t_select:
tensor([5, 6, 6, 8])
三、张量变换
3.1 torch.reshape()
功能:变换张量形状
注意事项:当张量在内存中是连续时,新张量与input共享数据内存
- input: 要变换的张量
- shape: 新张量的形状
举例:
t = torch.randperm(8)#0 to n - 1的随机排列
t_reshape = torch.reshape(t,(2,4))
print('t:{}\nt_reshape:\n{}'.format(t,t_reshape))
t[0] = 1024
print('t:{}\nt_reshape:\n{}'.format(t,t_reshape))
#内存地址相同,为什么要.data???
print('t.data内存地址:{}'.format(id(t.data)))
print('t_reshape.data内存地址:{}'.format(id(t_reshape.data)))
结果:
t:tensor([4, 1, 7, 6, 5, 0, 2, 3])
t_reshape:
tensor([[4, 1, 7, 6],
[5, 0, 2, 3]])
t:tensor([1024, 1, 7, 6, 5, 0, 2, 3])
t_reshape:
tensor([[1024, 1, 7, 6],
[ 5, 0, 2, 3]])
t.data内存地址:109526516584
t_reshape.data内存地址:109526516584
3.2 torch.transpose()
功能:交换张量的两个维度
- input: 要变换的张量
- dim0: 要交换的维度
- dim1: 要交换的维度
举例:
t = torch.rand((2,3,4))
t_transpose = torch.transpose(t,dim0=1,dim1=2)#交换第一个和第二个维度
print('t shape:{}\nt_transpose shape:{}'.format(t.shape,t_transpose.shape))
结果:
t shape:torch.Size([2, 3, 4])
t_transpose shape:torch.Size([2, 4, 3])
3.3 torch.t()
功能: 2维张量转置,对矩阵而言,等价于
torch.transpose(input, 0, 1)
3.4 torch.transpose()
功能: 压缩长度为1的维度(轴)
- dim: 若为None,移除所有长度为1的轴;若指定维度,当且仅当该轴长度为1时,可以被移除;
举例:
t = torch.rand((1,2,3,1))
t_sq = torch.squeeze(t)
t_0 = torch.squeeze(t,dim=0)
t_1 = torch.squeeze(t,dim=1)
print(t.shape)
print(t_sq.shape)
print(t_0)
print(t_1.shape)
结果:
torch.Size([1, 2, 3, 1])
torch.Size([2, 3])
tensor([[[0.8293],
[0.0632],
[0.1675]],
[[0.9306],
[0.4120],
[0.4964]]])
torch.Size([1, 2, 3, 1])
3.5 torch.unsqueeze()
功能:依据dim扩展维度
- dim: 扩展的维度
四、张量的数学运算
torch.add()
功能:逐元素计算 input+alpha×other
• input: 第一个张量
• alpha: 乘项因子
• other: 第二个张量
举例
t_0 = torch.randn((3,3))#标准正态分布
t_1 = torch.ones_like(t_0)
t_add = torch.add(t_0,10,t_1)#10*t_1+t_0
print('t_0:\n{}\nt_1:\n{}\nt_add_10:\n{}'.format(t_0,t_1,t_add))
结果:
t_0:
tensor([[ 1.1776, -1.2565, 0.5444],
[-0.5204, -2.4183, -0.5783],
[-0.9523, 0.7578, 0.5852]])
t_1:
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])
t_add_10:
tensor([[11.1776, 8.7435, 10.5444],
[ 9.4796, 7.5817, 9.4217],
[ 9.0477, 10.7578, 10.5852]])