前段时间写了两个系列文章,分别介绍了Python
中的两个重要的科学计算的库Numpy
和Scipy
。
从系列的文章中,可以看出,它们都提供了强大的数值计算功能,而且很多地方看着似乎是重复的。
其实这两个库虽然密切相关,但它们各自侧重的领域是不同的。
本篇我根据自己的使用体验,对两个库进行简单的对比分析。
1. Numpy的侧重点
首先是Numpy
库,我认为它是Python
中最基础的数值计算库,它是很多知名的科学计算库的基础(包括Scipy
,其实也是基于Numpy
的)。
这个库的名称Numpy
分两部分,前半部分Num
就是numerical
的缩写,表示它专注于数值处理;py
则是Python
的缩写。
Numpy
最强大的地方在于它的多维数组对象(ndarray
),不仅可以存储和处理大规模的数据,而且在进行数学运算时具有很高的性能。
使用Numpy
进行数值计算,绝对能改变你对Python运行性能差的固有印象。
这是因为Numpy
并没有直接使用Python
语言