可视化是以图形形式表示数据或信息的过程,在本文中,将介绍Seaborn的最常用15个可视化图表。
Seaborn是一个非常好用的数据可视化库,它基于Matplotlib,并且提供了一个高级接口,使用非常见简单,生成图表也非常的漂亮。
安装
安装非常简单:
`Pip install seaborn`
在使用时只要导入就可以了。
`import seaborn as sns`
Seaborn提供了一些内置的数据集,这里我们使用Seaborn的Iris数据集。
`data=sns.load_dataset('iris')` `data[10:15]`
我们看看数据量
`data['species'].value_counts()`
1、条形图
条形图用于表示分类变量,它只显示平均值(或其他估计值)。我们为x轴选择一个分类列,为y轴(花瓣长度)选择一个数值列,我们看到它创建了一个为每个分类列取平均值的图。
`sns.barplot(x='species',y='petal_length',hue='species',data=data)`
2、散点图
散点图是由几个数据点组成的图。x轴表示花瓣长度,y轴表示数据集的萼片长度。
`sns.scatterplot(x='petal_length',y='sepal_length',hue='species',style='species',s=90,data=data)`
3、直方图
直方图通常用于可视化单个变量的分布,但它们也可用于比较两个或更多变量的分布。除了直方图之外,KDE参数还可以用来显示核密度估计(KDE)。这里,我们使用萼片长度。
`sns.histplot(x='sepal_len