15 种 Seaborn 可视化图表详解

可视化是以图形形式表示数据或信息的过程,在本文中,将介绍Seaborn的最常用15个可视化图表。

Seaborn是一个非常好用的数据可视化库,它基于Matplotlib,并且提供了一个高级接口,使用非常见简单,生成图表也非常的漂亮。

安装

安装非常简单:



 `Pip install seaborn`


在使用时只要导入就可以了。



 `import seaborn as sns`


Seaborn提供了一些内置的数据集,这里我们使用Seaborn的Iris数据集。



 `data=sns.load_dataset('iris')` `data[10:15]`


我们看看数据量



 `data['species'].value_counts()`


1、条形图

条形图用于表示分类变量,它只显示平均值(或其他估计值)。我们为x轴选择一个分类列,为y轴(花瓣长度)选择一个数值列,我们看到它创建了一个为每个分类列取平均值的图。



 `sns.barplot(x='species',y='petal_length',hue='species',data=data)`


2、散点图

散点图是由几个数据点组成的图。x轴表示花瓣长度,y轴表示数据集的萼片长度。



 `sns.scatterplot(x='petal_length',y='sepal_length',hue='species',style='species',s=90,data=data)`


3、直方图

直方图通常用于可视化单个变量的分布,但它们也可用于比较两个或更多变量的分布。除了直方图之外,KDE参数还可以用来显示核密度估计(KDE)。这里,我们使用萼片长度。



 `sns.histplot(x='sepal_len
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值