机器学习(三)——多变量线性回归

目录

一、前言:

二、模型描述:

1.Hypothesis:

2.Cost Function:

 

三、多元梯度下降法

1.特征放缩

2.学习率α的选择:

四、特征与多项式回归

五、正规方程(区别于梯度下降法)

六、梯度下降法与正规方程法的比较


一、前言:

  1.   吴恩达第五章多线性变量回归笔记(所有例子均来自吴恩达机器学习视频课的内容)
  2. 在所有公式中,n为特征个数,m为样本数量

 

二、模型描述:

  与前面单变量线性回归类似,只是input值的个数,即特征的个数从一个变成了多个。

在上个单变量线性回归中,只采用了一个特征,房子尺寸,这里我们多添加了房间个数、楼层数以及房子的"年龄"。分别将这三个变量设为x1,x2,x3,x4。结果设为y。

 

1.Hypothesis:

H_\Theta (x)=\Theta _0+\Theta _1x_1+\Theta _2x_2+....+\Theta _nx_n

用矩阵表示:

由此得:

\large H_\Theta (x)=\Theta ^\tau x

 

2.Cost Function:

\large J(\Theta _0,\Theta _1)=\frac{1}{2m}\sum_{i=1}^m (h\Theta (x^{i})-y^{i})

 

 

三、多元梯度下降法

多元线性回归的代价函数和单变量的回归的代价函数是一样的,都是原参数减去学习率与原参数在代价函数上的偏导的乘积:

repeat until convergence{

    \large \Theta _j:=\Theta _j-\alpha \frac{\partial J(\Theta_0,\cdots,\Theta _n )}{\partial \Theta _j}

}

(全部同时更新)

 

1.特征放缩

虽然多元线性回归的梯度下降方法和单变量回归没有太大的差别,但是多元线性回归涉及到单变量回归没有的问题,就是多个特征值的取值差别过大,导致模型很难拟合。因此需要运用特征缩放的方法对数据进行预处理。

特征缩放其实很简单,比如我们的两个变量房屋的面积和房间数。房屋的面积 的范围在0-2000英寸,而我们的房间数在1-5间,这两个特征值就相差过大,导致梯度下降的困难。

只需要把房屋面积除以2000,房间数除以5,这样两个特征值的范围就在0-1之间,梯度下降就更加容易。

 

 

通常放缩得范围有如下几种:

  1. -1 ~ 1
  2. -3 ~ 3
  3. -1/3 ~ 1/3

 

2.学习率α的选择:

可以绘制出梯度下降迭代的次数和代价函数值的关系图,来判断函数是否收敛,从而判断这个学习率是否合适。

若学习率合适,则图像如下图所示

 

假如图像函数曲线随着迭代次数增加而上升,说明我们的学习率过大。

假如曲线是忽上忽下,则说明我们的学习率偏小。

根据图像我们就可以找到方向修改我们的学习率到合适的大小。通常学习率的改变方式是每十倍取值,比如0.001偏小了,则采取0.01,再偏小再取0.1。也可以采取每三倍的取值。

 

四、特征与多项式回归

很多时候采取的数据集的数据分布不是直线型的,可能是曲线,也可能是其他图形,此时就需要拟合非直线型的函数

 

比如这个房屋面积与价格的数据,我们可以看出来像一条抛物线,可以用二次模型去拟合。但是由一定数学知识就可以知道,当size超过一定值时,Price会随着Size的增大而减小,显然是与实际情况不相符的。此时便需要采取更加合理的三次模型。

 

此时函数就转化成用x1,x2,x3建立的模型。拟合度更高。

采取多次模型,特征放缩更为重要!

 

五、正规方程(区别于梯度下降法)

 

 

在得到矩阵X与矩阵y时,可以通过一下公式的到最佳θ值(数学原理视频也没解释我也不懂)

 

\large \Theta =(X^TX)^{-1}X^{T}y

用这种方法不需要进行特征缩放

 

六、梯度下降法与正规方程法的比较

梯度下降法正规方程法
需要选择学习率α(缺点)不需要选择学习率α(优点)
需要迭代(缺点)不需要迭代(缺点)
当特征数n非常大时,效率高(优点)当特征数n非常大时,效率低(优点)

如何选择?

根据视频课的说法,当n>=10000的时候,便需要考虑是否使用梯度下降法。

 

 

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习中,线性回归是一种常见的实战方法。线性回归的目标是通过拟合一个线性模型来预测一个连续的目标变量。在实际应用中,线性回归可以用于预测房价、销售量等连续变量线性回归的基本定义是通过最小化预测值与真实值之间的平方误差来拟合一个线性模型。这可以通过梯度下降算法来实现。梯度下降算法是一种迭代优化算法,通过不断调整模型参数来最小化损失函数。 在线性回归中,我们可以使用最小二乘法来计算模型参数。最小二乘法通过求解正规方程来得到模型参数的闭式解。然而,当矩阵为非满秩矩阵,无法求逆,这可以采用岭回归来解决这个问题。岭回归通过在矩阵的转置乘以矩阵上加上一个正则化项来使矩阵非奇异,从而能够求逆。 另一种方法是使用梯度下降算法来求解线性回归模型的参数。梯度下降算法通过不断迭代调整模型参数来最小化损失函数。在每一次迭代中,算法根据损失函数的梯度方向更新模型参数。通过不断迭代,梯度下降算法可以逐渐接近最优解。 在实际应用中,线性回归可以通过使用不同的特征工程方法来提高模型的性能。特征工程包括选择合适的特征、处理缺失值、进行特征缩放等。此外,线性回归还可以通过引入正则化项来防止过拟合问题。 总结起来,机器学习中的线性回归是一种常见的实战方法,可以通过最小化预测值与真实值之间的平方误差来拟合一个线性模型。可以使用最小二乘法或梯度下降算法来求解模型参数。在实际应用中,还可以通过特征工程和正则化来提高模型性能。 #### 引用[.reference_title] - *1* [机器学习实战(一)—— 线性回归](https://blog.csdn.net/qq_44715621/article/details/110449232)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [机器学习实战----线性回归](https://blog.csdn.net/zhangyingjie09/article/details/83018072)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [机器学习实战之线性回归](https://blog.csdn.net/luoluopan/article/details/88052806)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值