NCCL安装测试

NCCL安装教程

下载NCCL安装包

直接去官网下载安装包(要先注册NVIDIA账号,下载安装固定的nccl与cuda版本组合),历史版本点这里,也可以在github上获取所有版本,点击这里

根据对应cuda版本下载自己所需要的安装包

解压安装包

这边介绍以github上下载的tar.gz文件为例,构建与自己cuda适应的nccl

tar -zxvf nccl-版本号.tar.gz -C /to/your/path
-C:选择安装路径

构造库文件

cd nccl
make -j src.build
前提已经安装好cuda

如果 CUDA 不在默认的 /usr/local/cuda 路径中,使用以下命令定义 CUDA 路径:

make src.build CUDA_HOME=<to you path>

安装

要在系统上安装 NCCL,请创建一个软件包,然后以 root 身份安装它。

Ubuntu:

sudo apt install build-essential devscripts debhelper fakeroot
make pkg.debian.build

CentOS:

sudo yum install rpm-build rpmdevtools
make pkg.redhat.build

centos构建完成后去对应文件夹内安装

cd /to/your/path/nccl
cd /build/pkg/rpm/x86_64
rpm -ivh  libnccl-2.18.1-1+cuda12.0.x86_64.rpm
rpm -ivh  libnccl-devel-2.18.1-1+cuda12.0.x86_64.rpm
rpm -ivh  libnccl-static-2.18.1-1+cuda12.0.x86_64.rpm

看自己构建的组合安装

ubuntu构建完成后去对应文件夹内安装

cd /to/your/path/nccl
cd /build/pkg/deb/
dpkg -i libnccl2_2.18.1-1+cuda11.8_amd64.deb
dpkg -i libnccl-dev_2.18.1-1+cuda11.8_amd64.deb
看自己构建的组合安装

centos测试是否安装完成

rpm -qa | grep libnccl
rpm -q libnccl
有输出证明安装完成

ubuntu测试是否安装完成

dpkg -l |grep libnccl

测试

NCCL 的测试在https://github.com/nvidia/nccl-tests上单独维护。

git clone https://github.com/NVIDIA/nccl-tests.git
cd nccl-tests
make
./build/all_reduce_perf -b 8 -e 256M -f 2 -g 4
### 安装 NCCL 在 Windows 上的支持情况 目前,官方 NVIDIA NCCL 库主要支持 Linux 平台,并未提供针对 Windows 的正式版本和支持[^1]。这意味着在 Windows 环境下无法通过标准流程来安装和配置 NCCL。 对于希望在 Windows 中使用 NCCL 功能的需求,可以考虑以下几种替代方案: #### 使用 WSL (Windows Subsystem for Linux) WSL 是一种兼容层技术,允许开发者直接在 Windows 10 或更高版本操作系统内运行 GNU/Linux 环境而无需修改底层硬件虚拟化设置。这使得用户可以在接近原生性能的情况下执行基于 Linux 的应用程序和服务,包括那些依赖于特定库的应用程序,如 NCCL。 为了利用这一特性,在 WSL 下完成 NCCL 的部署步骤如下所示: - 启用 WSL 特性和安装所需的 Linux 发行版; - 更新包管理器并安装 CUDA 工具链以及相关驱动; - 下载适合当前系统的 NCCL 归档文件并按照常规方式进行解压缩与路径配置; ```bash # 假设已经正确设置了CUDA环境变量 tar -xzvf nccl_2.15.1-1+cuda11.0_x86_64.tgz -C /usr/local/ export LD_LIBRARY_PATH=/usr/local/nccl_2.15.1-1+cuda11.0_x86_64/lib:$LD_LIBRARY_PATH ``` #### 利用 Docker 集成 GPU 支持 另一种方法是借助 Docker 来构建一个包含所需软件栈的容器镜像,其中包括经过验证可工作的 NCCL 实现。这种方法的优势在于它能够隔离开发测试环境中的各种依赖关系冲突问题,同时也简化了跨平台移植过程。 创建自定义 Dockerfile 文件时需注意指定基础映像应为 nvidia/cuda 这样的预置有 GPU 加速功能的基础镜像之一,并在其基础上添加必要的组件。 ```dockerfile FROM nvidia/cuda:11.0-base RUN apt-get update && \ DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \ build-essential \ git \ wget \ ca-certificates \ libnuma-dev \ && rm -rf /var/lib/apt/lists/* ENV NCCL_VERSION 2.15.1 RUN mkdir -p /tmp/nccl && \ cd /tmp/nccl && \ wget https://developer.download.nvidia.com/compute/redist/nccl/v${NCCL_VERSION}/nccl_${NCCL_VERSION}-1+cuda11.0_x86_64.txz && \ tar xf nccl_${NCCL_VERSION}-1+cuda11.0_x86_64.txz && \ cp ./build/lib/* /usr/local/cuda/lib64/ && \ ldconfig && \ rm -r /tmp/nccl ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值