自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(133)
  • 收藏
  • 关注

原创 YOLOv5改进 | 一文汇总:如何在网络结构中添加注意力机制、C3、卷积、Neck、SPPF、检测头

为了进一步提升YOLOv5的性能,研究人员提出了多种改进策略,包括注意力机制、C3模块、卷积改进、Neck改进、SPPF模块、检测头改进等。本文将对这些改进策略进行综述,介绍其原理、应用场景、算法实现、代码示例、部署测试方法、文献资料、应用案例、总结、影响和未来扩展方向等。C3模块是一种用于特征提取的网络结构,它能够融合不同尺度的特征,从而提升模型对小目标的检测能力。SPPF模块是一种用于多尺度特征融合的网络结构,它可以提取不同尺度的特征并进行融合,从而提升模型对多尺度目标的检测能力。

2024-05-24 21:31:37 1675

原创 特征融合篇 | 结合内容引导注意力 DEA-Net 思想 实现双主干特征融合新方法 | IEEE TIP 2024

本篇介绍了一种基于细节增强注意力块(DEAB)的双主干特征融合新方法,该方法在 IEEE TIP 2024 上发表。该方法将内容引导注意力机制与细节增强卷积相结合,有效地融合了来自不同尺度的特征,显著提升了单幅图像去雾性能。该方法将内容引导注意力机制与细节增强卷积相结合,有效地融合了来自不同尺度的特征,显著提升了单幅图像去雾性能,在 IEEE TIP 2024 上得到了认可。

2024-05-23 22:32:37 1159

原创 改进YOLOv5 | 在 C3 模块中添加【SimAM】【CoTAttention】【SKAttention】【DoubleAttention】注意力机制

YOLOv5 是一个强大的目标检测模型,在 COCO 数据集上取得了 state-of-the-art 的结果。为了进一步提高 YOLOv5 的性能,本文提出了一种改进方案,在 C3 模块中添加 SimAM、CoTAttention、SKAttention 和 DoubleAttention 注意力机制。

2024-05-09 12:14:14 1139

原创 YOLOv11 | Conv篇 | ADown轻量化下采样操作

异构多分支架构:融合卷积与池化优势动态权重学习:自适应特征重要性硬件感知设计:内存连续+并行计算边缘计算设备实时视频分析功耗敏感场景完整代码已开源,未来将持续优化动态权重的量化方案和跨平台部署能力。

2025-06-10 18:34:31 634

原创 YOLOv11 | 注意力机制篇 | EMAttention与C2PSA机制的协同优化

检测精度:COCO mAP提升5.8,小目标检测提升8.2场景适应性:遮挡场景性能提升8.7工程可行性:推理时延控制在10ms以内开发移动端专用轻量版探索多模态注意力融合研究动态稀疏注意力机制。

2025-06-10 18:32:52 834

原创 YOLOv11 | 注意力机制篇 | 可变形大核注意力Deformable-LKA与C2PSA机制

性能突破:COCO mAP提升6.2%,重度遮挡场景提升9.8%形变适应:动态调整感受野适应目标形变位置感知:通过C2PSA保留关键空间信息高效部署:TensorRT优化后保持实时性能该方案特别适用于行人检测、自动驾驶等需要处理形变和遮挡的场景,其模块化设计便于迁移到其他视觉任务。未来工作将聚焦于可变形注意力的自动压缩和3D扩展。

2025-06-05 21:57:30 1154

原创 YOLOv11 | 注意力机制篇 | 混合局部通道注意力MLCA与C2PSA机制

性能突破:COCO mAP提升4.7%,小目标检测提升8.4%混合感知:同时捕获局部细节与全局上下文位置感知:通过C2PSA保留关键空间信息高效部署:TensorRT优化后仅损失9.6% FPS该方案特别适用于无人机航拍、自动驾驶等需要多尺度感知的场景,其模块化设计便于迁移到其他视觉任务。未来工作将聚焦于注意力机制的自动压缩和3D扩展。

2025-06-05 21:54:43 809

原创 YOLOv11 | 注意力机制篇 | LSKAttention大核注意力与C2PSA机制助力极限涨点

极限性能突破:COCO mAP提升5.8%,小目标检测提升9.7%超大感受野:等效31×31卷积的上下文捕获能力位置感知增强:通过C2PSA保留关键空间信息高效部署:TensorRT优化后仅损失13% FPS该方案特别适用于无人机航拍、交通监控等需要大范围上下文理解的场景,其模块化设计也便于迁移到其他视觉任务。未来工作将聚焦于注意力机制的自动压缩和3D扩展。

2025-06-03 14:56:47 39

原创 YOLOv11改进 | 注意力机制篇 | SEAM与C2PSA机制优化遮挡检测

遮挡鲁棒性:显著提升30-70%遮挡场景下的检测性能位置感知:通过C2PSA保留关键空间信息高效设计:仅增加0.8%参数量即插即用:无需修改网络主体结构实验证明该改进在密集人群、交通监控等遮挡严重场景表现优异,且不影响正常场景的性能。这种注意力机制的创新组合为目标检测中的遮挡问题提供了有效解决方案,其模块化设计也便于迁移到其他视觉任务中。未来工作将聚焦于注意力机制的自动化和3D扩展。

2025-06-02 16:26:17 705

原创 YOLOv11改进 | Conv/卷积篇 | 全维度动态卷积ODConv与二次创新C3k2助力YOLOv11有效涨点

全维度动态性:核/空间/通道/输入四重自适应多尺度协同:通过C3k2整合不同感受野高效计算:注意力机制实现智能资源分配显著性能提升:COCO mAP提升4.5%实验表明,该改进对小目标检测尤为有效(mAP提升7.4%),同时保持了合理的计算开销增长。这种动态卷积与架构创新的结合为目标检测模型设计提供了新思路,其模块化特性也便于迁移到其他视觉任务中。未来工作将聚焦于动态机制的自动化和硬件友好性优化。

2025-06-01 10:06:25 707

原创 YOLOv11改进 | DWRSeg扩张式残差助力小目标检测

本文提出的DWRSeg模块通过创新的扩张式残差结构,有效提升了YOLOv11在小目标检测任务上的性能。C3k2DWRSeg作为基础模块,在保持模型效率的同时增强了多尺度特征提取能力。实验证明,该方法在多个小目标检测数据集上达到了state-of-the-art的性能,同时保持了较高的推理速度,适合实际应用部署。未来可进一步探索动态扩张机制和与其他先进模块的融合,持续提升小目标检测的性能上限。

2025-05-27 02:44:05 1033 1

原创 YOLOv11改进 | Neck篇 | 双向特征金字塔网络BiFPN助力YOLOv11有效涨点

更高效的特征融合:双向路径实现跨尺度信息充分交互自适应特征加权:学习不同分辨率特征的最优组合计算效率平衡:深度可分离卷积保持轻量性即插即用设计:无需修改其他网络组件实验表明,该改进在保持推理效率的同时显著提升检测性能,特别对小目标检测改善明显(+7.9% mAP)。BiFPN的模块化设计使其可轻松迁移到其他视觉任务,为多尺度特征处理提供了新的解决方案。未来工作将聚焦于动态结构和自动化设计方向。

2025-05-26 07:14:22 859

原创 YOLOv11改进 | Conv/卷积篇 | 2024 ECCV最新大感受野的小波卷积WTConv助力YOLOv11有效涨点

大感受野优势:等效15×15卷积核的感知范围多频带协同:低频定位与高频细节的互补增强动态适应性:学习各频带的最优融合权重部署友好:通过定制插件实现高效推理实验表明,WTConv在COCO数据集上可实现2.8%的mAP提升,对小目标检测的改善尤为显著(+6.7%)。这种基于频域分析的卷积创新为计算机视觉模型的架构设计提供了新思路,特别适用于需要多尺度感知的视觉任务。未来工作将聚焦于可学习小波基和硬件协同设计方向。

2025-05-23 22:18:01 868

原创 YOLOv11改进 | Neck篇 | 轻量化跨尺度跨通道融合颈部CCFM助力YOLOv11有效涨点

本文提出的CCFM模块通过创新的跨尺度跨通道融合机制,在YOLOv11的Neck部分实现了显著的性能提升。轻量化设计:深度可分离卷积+通道混洗减少计算负担高效特征融合:多尺度特征交互增强小目标检测动态通道适应:注意力机制提升特征表达能力即插即用:可无缝集成到现有YOLO架构实验表明,CCFM在COCO数据集上可实现2.5%的mAP提升,同时减少15%的参数量。该模块特别适合资源受限场景下的实时目标检测应用,为工业部署提供了新的优化方向。

2025-05-16 11:33:31 1170

原创 YOLOv11与Roboflow数据集使用全攻略

数据集搜索与下载数据标注工具数据预处理与增强多种格式导出数据集版本控制本文全面介绍了YOLOv11模型及其与Roboflow数据集的结合使用。从环境准备、数据获取、模型训练到部署应用,提供了完整的实践指南。YOLOv11在保持YOLO系列实时性优势的同时,通过多项创新进一步提升了检测精度,使其成为工业界和学术界的有力选择。Roboflow平台极大地简化了数据集获取和处理的流程,使得开发者可以更专注于模型设计和优化。

2025-05-11 13:04:35 1276 1

原创 YOLOv11 MobileViTv2主干网络集成指南

本方案通过MobileViTv2的精心改造和YOLOv11的深度适配,在保持轻量化的同时实现了检测精度的提升,特别适合移动端和边缘计算场景。实际部署测试显示,在华为Mate40设备上可实现62FPS的实时检测性能,功耗控制在1.2W以内。

2025-05-11 08:00:00 421

原创 YOLOv11 MobileViTv1主干网络集成指南

将MobileViTv1集成到YOLOv11的主干网络中,为移动端目标检测提供了一种高效的混合架构解决方案。通过结合CNN的局部特征提取能力和Transformer的全局建模优势,MobileViTv1在保持轻量化的同时显著提升了特征表示能力。本文提供的完整实现方案涵盖了从理论原理到工程实践的各个环节,开发者可以根据实际需求灵活调整网络配置。随着移动AI的普及,这类高效架构将成为边缘计算的重要选择。

2025-05-09 08:00:00 576

原创 多图详解VSCode搭建Python开发环境

通过本文的详细指导和图示演示,我们全面了解了如何使用VSCode搭建高效的Python开发环境。环境配置:正确安装Python扩展和解释器核心功能:利用智能补全、调试和测试工具提升效率高级应用:Jupyter Notebook和远程开发支持问题解决:常见问题的诊断和修复方法VSCode作为Python开发环境,提供了从简单脚本到复杂项目的全方位支持,配合不断发展的扩展生态系统,将继续成为Python开发者的强大工具。

2025-05-05 13:41:16 1196 2

原创 YOLOv8 标签透明化与可视化优化指南

本文详细介绍了YOLOv8检测结果的可视化优化技术,包括标签透明化、文字大小调节和边界框粗细调节。通过灵活的代码实现,用户可以根据不同应用场景定制最适合的可视化效果。这些优化不仅能提升视觉体验,还能在实际应用中提高检测结果的可读性和可用性。

2025-05-05 12:39:28 286

原创 YOLOv11改进:利用RT-DETR主干网络PPHGNetV2助力轻量化目标检测

目标检测作为计算机视觉领域的核心任务之一,在自动驾驶、视频监控、医疗影像分析等领域有着广泛应用。YOLO(You Only Look Once)系列作为实时目标检测的代表性算法,以其高效性和准确性著称。YOLOv11作为该系列的最新演进版本,在保持实时性的同时进一步提升了检测精度。本文提出将RT-DETR(Real-Time DEtection TRansformer)的主干网络PPHGNetV2引入YOLOv11,旨在实现模型轻量化的同时提升检测性能。

2025-05-03 23:11:20 1282 2

原创 YOLOv11改进:视觉变换器SwinTransformer目标检测网络

本文提出的Swin-YOLOv11目标检测网络,通过将SwinTransformer的强大特征提取能力与YOLOv11的高效检测框架相结合,在保持实时性的同时显著提升了检测精度。实验表明,该方法在COCO等基准数据集上优于原版YOLOv11,特别是在复杂场景和小目标检测方面表现突出。通过灵活的架构设计,可以适配从移动端到服务器端的各种应用场景。未来工作将聚焦于进一步优化计算效率,探索更高效的自注意力机制,以及研究自监督预训练方法。

2025-04-30 12:04:00 816

原创 YOLOv11改进:RevColV1可逆列目标检测网络(特征解耦助力小目标检测)

本文提出的RevCol-YOLOv11目标检测网络,通过创新的可逆列架构和特征解耦机制,显著提升了小目标检测性能。实验表明,该方法在保持YOLO系列高效特性的同时,对小目标的检测精度提升明显。可逆设计带来的无损特征传播和多列交互增强的特征表示能力,为目标检测领域提供了新的技术思路。未来工作将聚焦于进一步优化计算效率,探索更灵活的特征解耦策略,以及研究跨模态的可逆学习框架。

2025-04-26 16:02:30 724 1

原创 YOLOv11改进:轻量级移动端网络ShuffleNetV2(附代码+修改教程)

本文提出的Shuffle-YOLOv11目标检测网络,通过引入ShuffleNetV2的轻量化设计,在保持YOLO系列实时性的同时大幅降低了模型复杂度和计算量。实验证明,该方法在移动端设备上实现了显著的加速效果,为边缘计算场景提供了实用的解决方案。完整的代码实现和详细的修改教程,使开发者能够快速将这一改进应用到实际项目中。未来工作将聚焦于进一步优化模型效率,探索自动化轻量化方法,以及研究跨平台的统一优化策略。

2025-04-23 16:06:26 826

原创 YOLOv11:可变形大核注意力与C2PSA机制的创新融合

形变自适应的大核感受野(31×31可变形卷积)跨维度的注意力协同(空间-通道联合优化)位置感知的遮挡补偿(显式位置编码+特征增强)实验证明该方案在保持实时性的前提下,显著提升了模型在复杂场景下的检测能力。特别是对重度遮挡目标的检测精度提升达9.8%,为自动驾驶、视频监控等关键应用提供了更可靠的技术方案。未来工作将聚焦于算法在边缘设备上的极致优化,以及3D视觉任务的扩展应用。

2025-04-21 07:30:00 902

原创 YOLOv11改进:轻量级移动端网络ShuffleNetV1(附代码+修改教程)

本文提出的ShuffleNetV1-YOLOv11目标检测网络,通过引入ShuffleNetV1的轻量化设计,在保持YOLO系列实时性的同时大幅降低了模型复杂度和计算量。实验证明,该方法在移动端设备上实现了显著的加速效果,为边缘计算场景提供了实用的解决方案。完整的代码实现和详细的修改教程,使开发者能够快速将这一改进应用到实际项目中。未来工作将聚焦于进一步优化模型效率,探索自动化轻量化方法,以及研究跨平台的统一优化策略。

2025-04-19 12:38:17 636

原创 YOLOv11改进:基于小波卷积WTConv的大感受野目标检测网络-

本文提出的WT-YOLOv11目标检测网络,通过引入小波卷积的多尺度分析能力,显著提升了模型的大感受野建模能力和多尺度目标检测性能。实验表明,该方法在保持YOLO系列高效特性的同时,在多个基准数据集上实现了明显的性能提升,特别是在小目标检测和复杂场景下的表现尤为突出。完整的技术实现和详细的部署方案,为计算机视觉领域的研究者和工程师提供了实用的技术参考。未来工作将聚焦于进一步优化计算效率,探索自适应小波变换机制,以及研究跨模态的小波表示学习。

2025-04-18 21:13:29 719 1

原创 YOLOv8 Bug 及解决方案汇总 【2024.1.24更新】【环境安装】【训练 & 断点续训】OMPError / KeyError

YOLOv8是一款强大的目标检测算法,但其使用过程中也会遇到各种问题。本文总结了常见的Bug及解决方案,旨在帮助开发者更好地使用YOLOv8。在遇到问题时,应首先分析问题产生的原因,然后针对性地采取解决方案。

2025-04-18 21:07:30 820

原创 关于 YOLOv8 modules.py 拆分成了 _init_.py block.py conv.py head.py trasnformer.py utils.py

YOLOv8的模块化设计极大地提高了代码的可读性、可维护性和可扩展性。通过将功能模块化,YOLOv8不仅在目标检测任务中表现出色,而且为未来的研究和开发提供了良好的基础。

2025-04-12 18:00:00 875 1

原创 不怕YOLOv10高歌猛进,我有YOLOv8稳扎稳打

YOLOv8作为一款成熟且稳定的目标检测模型,在实际应用中具有广泛的适用性。虽然YOLOv10等新模型不断涌现,但YOLOv8仍以其稳健的表现和丰富的生态圈,成为许多开发者和研究者的首选。

2025-04-11 09:49:44 165

原创 YOLO-Magic 系列框架介绍 【订阅必读】

YOLO-Magic系列框架作为YOLOv5的深度优化和扩展,在目标检测领域引起了广泛关注。该系列框架通过一系列创新性的设计,在性能、效率和灵活性方面取得了显著的提升。本文将深入探讨YOLO-Magic系列框架的原理、实现细节、应用场景以及未来发展趋势。YOLO-Magic系列框架在YOLOv5的基础上进行了深入优化,在性能、效率和灵活性方面取得了显著的提升。通过本文的介绍,读者可以对YOLO-Magic系列框架有一个全面的了解,并将其应用于实际项目中。

2025-04-11 09:32:41 364

原创 NumPy依赖库BLAS和LAPACK详细信息解析

BLAS和LAPACK是NumPy高性能线性代数运算的基础。了解如何检查和配置这些底层库对于科学计算应用的性能优化和问题诊断至关重要。确定当前NumPy使用的BLAS/LAPACK实现评估和比较不同实现的性能针对特定硬件优化配置解决部署中的兼容性问题诊断数值计算中的异常行为随着计算硬件的发展,BLAS/LAPACK生态系统也在不断进化,为科学计算提供更强大的基础支持。

2025-04-09 00:00:00 687

原创 YOLOv8 改进有效涨点专栏目录 | 含卷积、主干、注意力机制、Neck、检测头、损失函数、二次创新C2PSA/C3k2等各种网络结构改进

YOLOv8在目标检测领域的地位与优势模型改进的意义与价值本专栏的特色与创新点读者学习路径建议关键改进点回顾不同场景的模型选型建议开源社区资源汇总持续学习路径指南YOLOv8在目标检测领域的地位与优势模型改进的意义与价值本专栏的特色与创新点读者学习路径建议关键改进点回顾不同场景的模型选型建议开源社区资源汇总持续学习路径指南。

2025-04-05 14:45:58 899

原创 YOLOv11训练:Roboflow免费数据集获取与格式转换超详细教程

公共数据集库:包含超过20,000个开源数据集数据标注工具:支持在线标注和团队协作数据预处理:自动增强、扩充和格式化版本控制:像管理代码一样管理数据集版本多格式导出:支持所有主流目标检测格式import cv2# 加载图像# 加载标注# 数据增强# 调整尺寸# 调整标注坐标# 转换为Tensor# 实现保持长宽比的resize逻辑pass# 坐标转换逻辑pass# 数据增强实现pass数据集选择优先选择Roboflow上标注质量高的官方数据集。

2025-04-05 11:17:21 1301

原创 YOLOv11训练教程:PyTorch与PyCharm在Windows 11下的完整指南

本教程详细介绍了在Windows 11系统下使用PyTorch和PyCharm进行YOLOv11模型训练的全流程,包括环境配置、算法原理、代码实现和部署应用。YOLOv11作为当前最先进的实时目标检测算法之一,在保持YOLO系列高速特性的同时,通过多项创新提升了检测精度。YOLOv11的核心原理与架构PyTorch环境配置与模型训练技巧实际应用中的完整开发流程常见问题的解决方法随着计算机视觉技术的不断发展,目标检测算法将在更多领域发挥重要作用。

2025-04-05 11:05:46 1626 1

原创 【8】万字长文,YOLOv8 yaml 文件解析 | 一文搞定 YOLOv8 分类任务,检测任务,分割任务,关键点任务

YAML(YAML Ain't Markup Language)是一种人类可读的数据序列化格式,常用于配置、数据存储等。在YOLOv8中,YAML文件用于定义模型架构、训练参数、数据集路径等信息。YOLOv8的YAML文件提供了高度的灵活性,可以轻松配置各种目标检测任务。通过合理配置YAML文件,我们可以快速训练出满足不同需求的模型。

2025-04-04 23:45:00 837

原创 【7】基础入门篇 | YOLOv8 项目【训练】【验证】【推理】最简单教程 | YOLOv8必看 | 最新更新,直接打印 FPS,mAP50,75,95

本文详细介绍了使用YOLOv8训练、验证和推理目标检测模型的全过程。通过本文的指导,您可以快速上手YOLOv8,并应用于实际项目中。本文旨在为想要学习和使用YOLOv8的开发者提供一个清晰的指导。通过本文的指导,相信读者能够快速上手YOLOv8实验,并取得不错的效果。如果您还有其他问题,欢迎随时提出。温馨提示:只有通过自己动手实现,才能更深入地理解YOLOv8算法。深度学习领域发展迅速,建议您保持学习,及时了解最新的研究成果。积极参与深度学习社区,与其他研究者交流,共同进步。

2025-04-02 16:42:27 242

原创 【6】YOLOv8 训练自己的分割数据集

YOLOv8-seg在实例分割任务上表现出色,通过本文的指导,您可以快速上手YOLOv8-seg,训练自己的分割数据集。本文旨在为想要使用YOLOv8进行实例分割任务的读者提供一个全面的指南。通过本文的指导,相信读者能够快速上手YOLOv8-seg实验,并取得不错的效果。如果您还有其他问题,欢迎随时提出。温馨提示:只有通过自己动手实现,才能更深入地理解YOLOv8算法。深度学习领域发展迅速,建议您保持学习,及时了解最新的研究成果。积极参与深度学习社区,与其他研究者交流,共同进步。

2025-01-26 00:05:08 241

原创 【5】使用YOLOv8训练自己的【目标检测】数据集-【收集数据集】-【标注数据集】-【划分数据集】-【配置训练环境】-【训练模型】-【评估模型】-【导出模型】

自行拍摄:根据检测需求,在不同场景、光照条件下采集图像或视频。公开数据集:ImageNet、COCO等数据集可以提供基础数据。网络爬取:根据特定目标,从网络上爬取相关图片。图像清晰,目标物体完整。多样性:不同角度、尺度、遮挡等情况下的图像。本文详细介绍了使用YOLOv8训练自定义数据集的整个流程。通过本文的指导,相信读者能够快速上手YOLOv8实验,并取得不错的效果。温馨提示:只有通过自己动手实现,才能更深入地理解YOLOv8算法。

2024-12-11 16:20:01 515 1

原创 【4】YOLOv8小白中的小白安装环境教程!没一个字废话,看一遍不踩坑!

通过以上步骤,你就可以成功搭建YOLOv8的开发环境。在后续的实验中,你可以根据自己的需求,对YOLOv8进行训练、测试和部署。

2024-11-30 06:00:00 94

原创 【3】万字长文,小白新手怎么开始做YOLO实验,从零开始教!整体思路在这里,科研指南针!

本文从小白的角度出发,详细介绍了YOLO实验的整个流程。通过本文的指导,相信读者能够快速上手YOLO实验,并取得不错的效果。

2024-11-25 13:22:11 223

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除