Fortran lapck求数组的逆矩阵

这两个Fortran子程序分别用于计算复数和双精度实数矩阵的逆,通过LAPACK95库实现LU分解。首先进行LU分解,如果失败则输出错误信息并停止程序,然后计算逆矩阵,同样会覆盖原输入矩阵。
摘要由CSDN通过智能技术生成
    subroutine inv_cmplx(A,inv_A,N)
    use lapack95
    implicit none

    integer:: N ! 矩阵的大小
    integer:: info, lda, lwork, i
    integer:: ipiv(N)
    complex*16:: A(N,N), inv_A(N,N), work(N*N)

    inv_A = A
    ! 分配内存
    lda = N
    lwork = N*N

    ! 计算矩阵的LU分解
    call zgetrf(N, N, inv_A, lda, ipiv, info)

    if (info /= 0) then
        write(*,*) "LU分解失败!"
        stop
    end if

    ! 计算逆矩阵
    call zgetri(N, inv_A, lda, ipiv, work, lwork, info)
    end subroutine inv_cmplx

    subroutine inv_double(A,inv_A,N)
    use lapack95
    implicit none

    integer:: N ! 矩阵的大小
    integer:: info, lda, lwork, i
    integer:: ipiv(N)
    real*8:: A(N,N), inv_A(N,N), work(N*N)

    inv_A = A
    ! 分配内存
    lda = N
    lwork = N*N

    ! 计算矩阵的LU分解
    call dgetrf(N, N, inv_A, lda, ipiv, info)

    if (info /= 0) then
        write(*,*) "LU分解失败!"
        stop
    end if

    ! 计算逆矩阵
    call dgetri(N, inv_A, lda, ipiv, work, lwork, info)
    end subroutine inv_double

第一个函数是求复数的,第二个是求双精度的,注意求解的时候会覆写输入的数组。和MATLAB的INV函数是一致的。

Fortran语言提供了多种矩阵求逆的方法,其中最常用的是LU分解法和Gauss-Jordan法。下面分别介绍这两种方法的实现方式。 1. LU分解法 LU分解法将原矩阵分解为一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。逆的过程可以分为两步:先L和U的逆矩阵,然后根据A的逆矩阵公式(A^-1)=(LU)^-1=U^-1L^-1来A的逆矩阵。 下面是LU分解法的Fortran代码实现: ``` subroutine LU_inv(A, N, A_inv) ! A: 原矩阵,N: 矩阵维度,A_inv: 逆矩阵 implicit none integer, intent(in) :: N real*8, dimension(N, N), intent(in) :: A real*8, dimension(N, N), intent(out) :: A_inv real*8, dimension(N, N) :: L, U, L_inv, U_inv, temp integer i, j, k ! LU分解 do i=1, N do j=1, N if (i <= j) then U(i,j) = A(i,j) do k=1, i-1 U(i,j) = U(i,j) - L(i,k)*U(k,j) end do L(j,i) = 0.0d0 else L(j,i) = A(j,i) do k=1, j-1 L(j,i) = L(j,i) - L(j,k)*U(k,i) end do L(j,i) = L(j,i) / U(i,i) U(j,i) = 0.0d0 end if end do end do ! L和U的逆矩阵 do i=1, N L_inv(i,i) = 1.0d0 / L(i,i) do j=1, i-1 L_inv(i,j) = -L(i,j) / L(i,i) end do do j=i+1, N L_inv(i,j) = 0.0d0 end do end do do i=1, N U_inv(i,i) = 1.0d0 / U(i,i) do j=1, i-1 U_inv(i,j) = 0.0d0 end do do j=i+1, N U_inv(i,j) = -U(i,j) / U(i,i) end do end do ! A的逆矩阵 temp = matmul(U_inv, L_inv) A_inv = temp end subroutine LU_inv ``` 2. Gauss-Jordan法 Gauss-Jordan法是一种直接逆矩阵的方法,它通过对增广矩阵[A|I]进行初等行变换,将矩阵A变为单位矩阵I,同时将变换过程应用到单位矩阵上,得到矩阵A的逆矩阵。 下面是Gauss-Jordan法的Fortran代码实现: ``` subroutine Gauss_Jordan_inv(A, N, A_inv) ! A: 原矩阵,N: 矩阵维度,A_inv: 逆矩阵 implicit none integer, intent(in) :: N real*8, dimension(N, N), intent(in) :: A real*8, dimension(N, N), intent(out) :: A_inv real*8, dimension(N, 2*N) :: aug real*8 :: pivot integer i, j, k ! 构造增广矩阵[A|I] aug(:,1:N) = A aug(:,N+1:2*N) = 0.0d0 do i=1, N aug(i,i+N) = 1.0d0 end do ! 初等行变换,将A变为单位矩阵I do i=1, N pivot = aug(i,i) do j=1, 2*N aug(i,j) = aug(i,j) / pivot end do do j=1, N if (j /= i) then pivot = aug(j,i) do k=1, 2*N aug(j,k) = aug(j,k) - pivot*aug(i,k) end do end if end do end do ! 提取逆矩阵 A_inv = aug(:,N+1:2*N) end subroutine Gauss_Jordan_inv ``` 以上两种方法都可以解矩阵的逆,但LU分解法的计算量较小,适用于维度较大的矩阵;而Gauss-Jordan法对原矩阵的要较低,适用于一般情况下的矩阵求逆
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

空花缱绻三分

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值