Fortran 求矩阵的逆、行列式的值

 

 

#2019,10,8 更新:

    重写部分程序,增加部分注释

 

学Fortran的第一天,就写了这么点东西,分享一下。

内容包括:求矩阵的逆、行列式的值

其中:求逆的方法是先求伴随矩阵再除以行列式的值,

求行列式的值用的是求余子式的迭代法(从matlab里面的det函数获得的启发),

需要注意的是,Fortran中数组的存储是先列后行。

注释以后有空再加上吧。初学,程序有误或有待改进之处欢迎指正,有问题可以留言

感谢学习过程中帮助比较大的几个帖子及作者:

https://www.tutorialspoint.com/fortran/fortran_arrays.htm

https://blog.csdn.net/encaidx/article/details/7425707

http://bbs.fcode.cn/thread-1240-1-1.html

http://fcode.cn/guide-103-1.html


program main
    Implicit None
    integer::m=5,n=5
    integer::i
    real::A(5,5),B(5,5)
    !A=reshape((/1,8,3,4,5,6,7,8,9/),(/3,3/))
    A=reshape((/1, 2, 3, 4, 5 &
            ,12, 6, 7, 8, 9 &
            , 0, 3, 2, 8,12 &
            , 3, 4, 5, 6, 7 &
            , 1, 4, 2, 3, 5 &
            /),(/5,5/))
    write(*,*) "  A= "
    write(*,"(5f12.6)") (a(i,:),i=1,n)
    !write(*,"(3f12.6)") (a(i,:),i=1,n)
    write(*,"(/,A)") "inv A= "
    b=inv(a,n)
    write(*,"(5f12.6)") (b(i,:),i=1,n)
    !write(*,"(3f12.6)") (b(i,:),i=1,n)
    write(*,"(/,A)") "det A= "
    print *,det(A,m,n)
    read*
    
    contains

    !-----------递归求行列式的值--------------------
    recursive function det(A,col,row) result(D)
    Implicit None
    integer row,col
    real::A(col,row),B(row-1,col-1)
    real::D
    integer row_now,col_now,k,c,f
    row_now=row 
    col_now=col
    if (row_now>1) then
        D = 0.0;
        do k=1,row_now
            if(k==1)then
                B=A(2:col_now,2:row_now)
            elseif(k<row_now)then
                B(1:k-1,:)=A(1:k-1,2:row_now)
                B(k:col_now-1,:)=A(k+1:col_now,2:row_now)
            else
                B=A(1:col_now-1,2:row_now)
            endif
            c=col-1
            f=row-1
            D = D + (-1)**(1+k) * A(k,1) *&
                det(B,c,f)
        end do
    else
        D = A(1,1);
    end if
    end function det


    function delete_col_row(A,m,n,k,tar) result(b)
        !tar == 1,在 m*n 的矩阵中删去第 k 行
        !tar != 1,在 m*n 的矩阵中删去第 k 列,方便伴随矩阵的计算
        Implicit None
        integer::m,n,k,tar
        real::a(m,n)
        real,allocatable::B(:,:)
        if(tar==1)then
            allocate(B(m-1,n))
            if(k==1)then
                B=A(2:m,:)
            elseif(k<m)then
                B(1:k-1,:)=A(1:k-1,:)
                B(k:m-1,:)=A(k+1:m,:)
            else
                B=A(1:m-1,:)
            endif
        else
            allocate(B(m,n-1))
            if(k==1)then
                B=A(:,2:n)
            elseif(k<n)then
                B(:,1:k-1)=A(:,1:k-1)
                B(:,k:n-1)=A(:,k+1:n)
            else
                B=A(:,1:n-1)
            endif
        endif
    end function delete_col_row

! ------------用  A* / |A|  计算逆矩阵---------
    function inv(A,row) 
    Implicit None
    integer::row,i,j
    real::A(row,row)
    real::inv(row,row),b(row-1,row-1)
    do i=1,row
        do j=1,row
            b=delete_col_row(delete_col_row(A,row,row,i,1),row-1,row,j,2)
            inv(i,j)=(-1)**(i+j)*det(b,row-1,row-1)/det(A,row,row)
        end do
    end do
    inv=transpose(inv)
    end function inv
end program main

与matlab运行结果对比

 

           

 

 

Fortran语言提供了多种矩阵求逆的方法,其中最常用的是LU分解法和Gauss-Jordan法。下面分别介绍这两种方法的实现方式。 1. LU分解法 LU分解法将原矩阵分解为一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。的过程可以分为两步:先L和U的矩阵,然后根据A的矩阵公式(A^-1)=(LU)^-1=U^-1L^-1来A的矩阵。 下面是LU分解法的Fortran代码实现: ``` subroutine LU_inv(A, N, A_inv) ! A: 原矩阵,N: 矩阵维度,A_inv: 矩阵 implicit none integer, intent(in) :: N real*8, dimension(N, N), intent(in) :: A real*8, dimension(N, N), intent(out) :: A_inv real*8, dimension(N, N) :: L, U, L_inv, U_inv, temp integer i, j, k ! LU分解 do i=1, N do j=1, N if (i <= j) then U(i,j) = A(i,j) do k=1, i-1 U(i,j) = U(i,j) - L(i,k)*U(k,j) end do L(j,i) = 0.0d0 else L(j,i) = A(j,i) do k=1, j-1 L(j,i) = L(j,i) - L(j,k)*U(k,i) end do L(j,i) = L(j,i) / U(i,i) U(j,i) = 0.0d0 end if end do end do ! L和U的矩阵 do i=1, N L_inv(i,i) = 1.0d0 / L(i,i) do j=1, i-1 L_inv(i,j) = -L(i,j) / L(i,i) end do do j=i+1, N L_inv(i,j) = 0.0d0 end do end do do i=1, N U_inv(i,i) = 1.0d0 / U(i,i) do j=1, i-1 U_inv(i,j) = 0.0d0 end do do j=i+1, N U_inv(i,j) = -U(i,j) / U(i,i) end do end do ! A的矩阵 temp = matmul(U_inv, L_inv) A_inv = temp end subroutine LU_inv ``` 2. Gauss-Jordan法 Gauss-Jordan法是一种直接矩阵的方法,它通过对增广矩阵[A|I]进行初等行变换,将矩阵A变为单位矩阵I,同时将变换过程应用到单位矩阵上,得到矩阵A的矩阵。 下面是Gauss-Jordan法的Fortran代码实现: ``` subroutine Gauss_Jordan_inv(A, N, A_inv) ! A: 原矩阵,N: 矩阵维度,A_inv: 矩阵 implicit none integer, intent(in) :: N real*8, dimension(N, N), intent(in) :: A real*8, dimension(N, N), intent(out) :: A_inv real*8, dimension(N, 2*N) :: aug real*8 :: pivot integer i, j, k ! 构造增广矩阵[A|I] aug(:,1:N) = A aug(:,N+1:2*N) = 0.0d0 do i=1, N aug(i,i+N) = 1.0d0 end do ! 初等行变换,将A变为单位矩阵I do i=1, N pivot = aug(i,i) do j=1, 2*N aug(i,j) = aug(i,j) / pivot end do do j=1, N if (j /= i) then pivot = aug(j,i) do k=1, 2*N aug(j,k) = aug(j,k) - pivot*aug(i,k) end do end if end do end do ! 提取矩阵 A_inv = aug(:,N+1:2*N) end subroutine Gauss_Jordan_inv ``` 以上两种方法都可以矩阵,但LU分解法的计算量较小,适用于维度较大的矩阵;而Gauss-Jordan法对原矩阵的要较低,适用于一般情况下的矩阵求逆
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值