- 博客(88)
- 资源 (18)
- 收藏
- 关注
原创 [OpenCV] cv::Mat to IplImage*
Head.h#include #include #include #include #include #include cv::Mat to IplImage*IplImage* workImg = cvLoadImage(img_name.c_str());IplImage* Y = cvCreateImage(cvGetSize(workImg),IPL_DEPTH_8
2017-05-17 17:15:56
875
原创 [OpenCV] RGB to YCBCR
RGB to YcbcrIplImage* workImg = cvLoadImage(img_name.c_str());IplImage* Y = cvCreateImage(cvGetSize(workImg),IPL_DEPTH_8U,1); IplImage* Cb= cvCreateImage(cvGetSize(workImg),IPL_DEPTH_8U,1); Ipl
2017-05-15 13:35:15
1374
转载 Linux 解压Zip大文件
Error Info:extra bytes at beginning or within zipfile (attempting to process anyway)Method:1. With command:zip -FFv foo.zip --out fixed.zipE.g.$ zip -FFv foo.zip --out fixed.zipFix archive (-
2017-03-28 12:25:09
5295
原创 MXNET VGG-16 Params
Download Link : http://data.dmlc.ml/mxnet/modelsBaidu Cloud : http://pan.baidu.com/s/1eRNiQ4q (CHN).json{ "nodes": [ { "op": "null", "param": {}, "name": "data"
2017-02-13 10:20:34
1707
1
原创 mudicom Ubuntu 安装
A python package that validates, reads, and extracts images from a DICOM file.How to install:Base:1. Python 2. GDCMsudo apt-get updatesudo apt-get install python-gdcmImage:numpy (
2017-01-25 11:17:42
800
原创 ResNet-18 Caffemodel and prototxt
GitHub: https://github.com/HolmesShuan/ResNet-18-Caffemodel-on-ImageNetAccuracy:Top-1: 66.45%Top-5: 87.10%DataSet: ILSVRC12 Short 256Model: Baidu Cloud OneDrivePr
2017-01-09 10:23:19
25849
转载 DeepID Generation I
Original Source: http://blog.csdn.net/a_1937/article/details/50334919在原Blog基础上进行了修改,未能完全复现博主结果。LFW Accuracy:91.4%Val DataSet:LFW 128x128 GrayTrain DataSet:CASIA WebFace Washed 144x144 Gray
2016-12-05 10:12:24
1404
4
原创 LFW DataBase Accuracy 测定说明
LFW数据集提供了 Positive 与 Negative 的验证值对,各6000组。Positive Pairs中为同一人的两个张图片的路径所对应的行号:E.g.57 60Abel_Pacheco/Abel_Pacheco_0001.jpgAbel_Pacheco/Abel_Pacheco_0004.jpgNegative Pairs中为非同一个人的两张图片的路径所对应
2016-11-18 17:00:43
4395
5
转载 ResNet-101/152 Protofiles and Caffemodels
Download from He Kaiming'sOneDrive.Upload to BaiduYun for Faster Download(CHN).Caffemodels:ResNet-50ResNet-101ResNet-152ProtoFiles:protofiles-masterOriginal Source:
2016-11-17 17:56:04
16735
转载 LAPACK 求矩阵的逆
original source: http://stackoverflow.com/questions/3519959/computing-the-inverse-of-a-matrix-using-lapack-in-cFunction:inv(A)C++ Code (Edited):#include #include // pre install ://
2016-11-14 14:54:39
3910
原创 浮点数量化2^n定点数
Target:将浮点数量化到最近的2^n定点数Code:E.g. 量化为3bit 区间为[-1,0.5]#include #include using namespace std;template int getArrayLen(Dtype& array){ return (sizeof(array) / sizeof(array[0]));}t
2016-11-12 10:49:19
3892
转载 ResNet-50 prototxt
name: "ResNet-50"input: "data"input_dim: 1input_dim: 3input_dim: 224input_dim: 224layer { bottom: "data" top: "conv1" name: "conv1" type: "Convolution" convolution_param {
2016-11-03 19:38:07
17884
1
原创 Pubfig DataBase 下载Python脚本
Original Source: http://www.cs.columbia.edu/CAVE/databases/pubfig/Useful data:dev_urls.txteval_urls.txtDownloadPython Script:notice: Python2.7 supportedimport osimport sysi
2016-10-21 17:18:07
2127
翻译 Caffe 初学拾遗(十二) Solver
{承接CNN学习入门,笔者在这里对Caffe官方网站上的相关介绍进行了翻译总结,欢迎大家交流指正}本文基于此刻最新的release,Caffe-rc3:Solver:solver通过将前向传播的推演与反向传播的参数更新相互协调,来达到减小loss的目的。学习过程分化为两部分,Solver监督优化目标并进行权重更新,Net计算Loss与Gradient。
2016-10-20 13:51:54
2377
原创 VGG-16 prototxt
solver.prototxtnet: "models/vgg16/train_val.prototxt"test_iter: 1000test_interval: 2500base_lr: 0.001lr_policy: "step"gamma: 0.1stepsize: 50000display: 20max_iter: 200000momentum: 0.9weigh
2016-10-02 14:18:49
18001
8
原创 Survey of CNN Quantization Algorithm
Part I.IntroductionConvolutionalneural networks show reliable results on object recognition and detection thatare useful in real world applications. Concurrent to the recent progress inrecogniti
2016-10-01 10:34:35
1833
翻译 Caffe 初学拾遗(十一) Layer Catalogue (Common Layer)
{承接CNN学习入门,笔者在这里对Caffe官方网站上的相关介绍进行了翻译总结,欢迎大家交流指正}本文基于此刻最新的release,Caffe-rc3:5. Common Layer:Inner Product:1.网络类型:InnerProduct2.CPU版本实现:./src/caffe/layers/inner_produc
2016-09-23 12:28:41
1074
翻译 Caffe 初学拾遗(十) Layer Catalogue (Data Layer)
{承接CNN学习入门,笔者在这里对Caffe官方网站上的相关介绍进行了翻译总结,欢迎大家交流指正}本文基于此刻最新的release,Caffe-rc3:4. Data Layer:Data通过data layer进入Caffe框架,他们位于net的最底层。Data可以来源于高效的数据库(LevelDB or LMDB),直接来自内存,或者,当效率不是那么
2016-09-23 10:10:20
535
翻译 Caffe 初学拾遗(九) Layer Catalogue (Activation/Neuron Layer)
{承接CNN学习入门,笔者在这里对Caffe官方网站上的相关介绍进行了翻译总结,欢迎大家交流指正}本文基于此刻最新的release,Caffe-rc3:3. Activation/Neuron Layer:一般而言,activation/neuron Layers执行的是逐元素操作,取出bottom blob中的数据,生成同样大小的top blob的数据
2016-09-22 18:00:41
563
翻译 Caffe 初学拾遗(八) Layer Catalogue (Loss Layer)
{承接CNN学习入门,笔者在这里对Caffe官方网站上的相关介绍进行了翻译总结,欢迎大家交流指正}本文基于此刻最新的release,Caffe-rc3:2. Loss Layer:Loss驱动整个学习过程,通过将网络输出与target比较,并将cost最小化来实现。Loss本身是通过forward pass计算出来的,关于loss的gradien
2016-09-22 16:34:54
575
翻译 Caffe 初学拾遗(七) Layer Catalogue (Vision Layer)
{承接CNN学习入门,笔者在这里对Caffe官方网站上的相关介绍进行了翻译总结,欢迎大家交流指正}本文基于此刻最新的release,Caffe-rc3:
2016-09-22 15:43:16
528
转载 Caffe 初学拾遗(六) CUDA 线程通信
Original Source:http://blog.csdn.net/augusdi/article/details/12833235一些CUDA编程的简单示例程序,笔者在此进行了整理说明:1.线程通信:理论上,各个线程所进行的处理是互不相关的,即两个线程不会产生交集(向量点积,向量加运算)。在实际中,各个线程不再是相互独立的,而
2016-09-22 10:48:46
1425
转载 Caffe 初学拾遗(五) CUDA 并行化示例
Original Source:http://blog.csdn.net/augusdi/article/details/12833235一些CUDA编程的简单示例程序,笔者在此进行了整理说明:在此之前,关于GPU选择(有提到流处理簇内容)以及Intel与Nvidia的争论,读者有兴趣也可以一看。Note:1. 没有任何前缀的
2016-09-21 15:40:09
4419
转载 Caffe 初学拾遗(四) CUDA 框架说明
Original Source:http://bbs.csdn.net/topics/390798229http://blog.csdn.net/augusdi/article/details/12833235在前人基础上,进行了精简和勘误,意在形成对CUDA编程的概念性理解:推荐书目:《GPU高性能编程CUDA实战》(译作) 原书名为《an introduct
2016-09-21 10:33:37
4136
翻译 Caffe 初学拾遗(三) Blobs, Layers, and Nets
{承接CNN学习入门,笔者在这里对Caffe官方网站上的相关介绍进行了翻译总结,欢迎大家交流指正}本文基于此刻最新的release,Caffe-rc3:
2016-09-20 16:39:50
747
原创 Convolutional neural networks(CNN) (十三) Convolutional Neural Network Exercise
{作为CNN学习入门的一部分,笔者在这里逐步给出UFLDL的各章节Exercise的个人代码实现,供大家参考指正}基于 Convolutional neural networks(CNN) (十二) Convolutional Neural Network Theory 理论分析,对 Exercise: Convolutional Neural Network进行了MatLab实现,同
2016-09-18 12:39:45
1106
原创 十进制二进制转换
基于库函数实现十进制转二进制,二进制转十进制。{二进制以字符串形式表示,不含除"0", "1"外其他字符}Language support(Up to now 16.9.14): C/C++ , PythonC/C++:Dec->Bin#include #include char buffer[9] = {0};_itoa( _integer, buff
2016-09-14 12:07:34
1030
原创 Convolutional neural networks(CNN) (十二) Convolutional Neural Network Theory
{作为CNN学习入门的一部分,笔者在这里逐步给出UFLDL的各章节Exercise的个人代码实现,供大家参考指正}UFLFL的Wiki部分并没有介绍CNN网络在添加了Convolutional Layer 以及 Pooling Layer之后的Fine-tuning方法,在UFLDL的Tutorial部分找到了相关的介绍,再次进行了进一步的整理和说明:
2016-09-11 16:35:30
822
原创 Convolutional neural networks(CNN) (十一) Convolution and Pooling Exercise
{作为CNN学习入门的一部分,笔者在这里逐步给出UFLDL的各章节Exercise的个人代码实现,供大家参考指正}理论部分可以在线参阅(页面最下方有中文选项)Feature extraction using convolution 以及 Pooling 部分内容Note:UFLDL中对Conv的计算方法与CS231n中的表述稍有不同,这里是对图像RGB三
2016-08-26 10:56:40
815
原创 Convolutional neural networks(CNN) (十) Learning color features with Sparse Autoencoders Exercise
{作为CNN学习入门的一部分,笔者在这里逐步给出UFLDL的各章节Exercise的个人代码实现,供大家参考指正}理论部分可以在线参阅(页面最下方有中文选项)Linear Decoders 以及之前的Autoencoders and Sparsity 部分内容Note:此章节的习题非常简单,区别于稀疏自编码,只需要对输出层的Error Term以及正向传
2016-08-23 13:02:06
709
原创 Caffe 初学拾遗(二) 利用prototxt文件传递变量
利用prototxt向Caffe中定义的某些层传递参数:1. 首先推荐一款源代码查看工具:Source Insight ,导入源码包以及调整字体大小可以参考Baidu。2. 这里给出修改caffe.proto文件,传递参数的方案:2.1 假定希望向卷基层传递一个参数 int32 x,先在.proto文件中添加:message ConvolutionParame
2016-08-10 12:09:31
1737
翻译 Caffe 初学拾遗(一) 简单命令
Original Source : Alex’s CIFAR-10 tutorial 本文以CIFAR-10数据集为例,对Caffe的train及test操作进行简单说明:1. solver.prototxt 以及 cifar10_full_train_test.prototxt 区别:CIFAR-10其训练网络配置文件与测试网络配置文件是同一个 cifar10_full_tr
2016-08-09 20:03:49
1888
原创 Convolutional neural networks(CNN) (九) Implement deep networks for digit classification Exercise
{作为CNN学习入门的一部分,笔者在这里逐步给出UFLDL的各章节Exercise的个人代码实现,供大家参考指正}理论部分可以在线参阅(页面最下方有中文选项)Self-Taught Learning to Deep Networks到Fine-tuning Stacked AEs部分内容但大部分推导都可以在在线参阅的内容Fine-tuning Stacked AEs
2016-08-04 09:48:03
631
原创 Stochastic Rounding Algorithm
Algorithm Implementation based on 《Deep Learning with Limited Numerical Precision》ICML 2015 LILLEC++ Version:#include #include using namespace std;float StochasticRounding(floa
2016-08-03 18:24:54
1829
原创 Convolutional neural networks(CNN) (八) Self-Taught Learning Exercise
{作为CNN学习入门的一部分,笔者在这里逐步给出UFLDL的各章节Exercise的个人代码实现,供大家参考指正}理论部分可以在线参阅(页面最下方有中文选项)Self-Taught Learning章节的内容。Notes:1. 整个过程只是将之前几章节的Assignment总结了一下,加以运用。 关键在于对之前用过的函数的参数的理解,这里需要根据In
2016-07-31 19:12:14
546
原创 Convolutional neural networks(CNN) (七) Softmax Regression Exercise
{作为CNN学习入门的一部分,笔者在这里逐步给出UFLDL的各章节Exercise的个人代码实现,供大家参考指正}理论部分可以在线参阅(页面最下方有中文选项)Softmax Regression章节的内容。Notes:1. 笔者得到的MNIST数据集的名称与softmaxExercise.m里面的并不一致,读者做实验时也请注意可能需要修改。2. St
2016-07-31 16:27:41
599
原创 Convolutional neural networks(CNN) (六) PCA and Whitening Exercise
{作为CNN学习入门的一部分,笔者在这里逐步给出UFLDL的各章节Exercise的个人代码实现,供大家参考指正}理论部分可以在线参阅(页面最下方有中文选项)PCA到Implementing PCA/Whitening部分内容此次练习比较简单,只给出相应代码与结果:pca_gen.m%%============================
2016-07-31 10:33:28
1340
原创 Convolutional neural networks(CNN) (五) PCA in 2D Exercise
{作为CNN学习入门的一部分,笔者在这里逐步给出UFLDL的各章节Exercise的个人代码实现,供大家参考指正}理论部分可以在线参阅(页面最下方有中文选项)PCA到Implementing PCA/Whitening部分内容,此次练习比较简单,只给出相应代码与结果:pca_2d.mclose all%%=====================
2016-07-31 09:37:46
734
原创 Convolutional neural networks(CNN) (四) Learn features for handwritten digits Exercise(Vectorization)
{作为CNN学习入门的一部分,笔者在这里逐步给出UFLDL的各章节Exercise的个人代码实现,供大家参考指正}此文基于Sparse Autoencoder Exercise的向量化优化版本代码,为读取MNIST数据集修改了sampleIMAGES.m以及train.m部分参数。Note: loadMNISTImages.m取出的结果是二维数组(784*60000)t
2016-07-30 16:14:56
504
神经网络学习入门学习整理ppt(2)
2015-11-01
Android 恶意软件及病毒查杀示例
2016-06-22
Hadoop及Spark集群搭建文档
2016-05-15
Implement deep networks for digit classification Exercise 权值矩阵
2016-08-04
远程控制程序(Server)
2015-10-01
Git-2.9.2-64-bit.exe
2016-07-21
Energy Efficient Sparse Connectivity from Imbalanced Synaptic Plasticity Rules
2015-12-15
IDS辅助补丁
2015-12-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人